Optical edge detection significantly reduces the image information load and is highly sought after in instant image processing. Robustness to the wavelength and polarization of light as well as mechanical vibration is a key requirement for practical applications. Here, a robust optical edge detector is proposed and demonstrated based on a reflective twisted liquid crystal q-plate. The device is composed of a mirror and a 1.46-μm-thick liquid crystal layer with a twist angle of 69.2°. The backtracking of the light inside the twisted medium forms a mirror symmetric twisted design and thus leads to a broadband self-compensated spiral phase modulation. By this means, an optical edge detector with excellent wavelength and polarization independence is presented for both coherent and partially coherent light sources. Additionally, the reflective design makes the system more compact and stable. This work supplies a practical design for robust optical edge detection, which may upgrade existing image processing techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.505845DOI Listing

Publication Analysis

Top Keywords

optical edge
20
robust optical
12
edge detection
12
image processing
8
wavelength polarization
8
edge detector
8
liquid crystal
8
edge
5
detection enabled
4
twisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!