Recent advances in patient-derived induced Pluripotent Stem Cell (iPSC) generation, improvement of cardiomyocyte-directed differentiation protocols, and the availability of new genome editing techniques have opened up new avenues for disease modeling of cardiomyopathies. Patients with cardiomyopathies often harbor a single-base substitution believed to be linked to the disease phenotype. Somatic cells derived from patients can be efficiently reprogrammed into iPSCs and subsequently engineered. The targeting of a precise mutation can be achieved by the introduction of double stranded breaks with CRISPR-Cas9 and by homology-directed repair when using a DNA donor template. This allows for the correction of a mutation in a patient iPSC line to generate an isogenic control. In addition, key mutations associated with cardiomyopathies can be introduced in an iPSC line derived from a healthy individual using the same techniques. In this chapter, we describe in detail how to engineer pluripotent stem cells to model cardiomyopathy in a dish using CRISPR-Cas9 technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3527-8_8 | DOI Listing |
STAR Protoc
January 2025
Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany. Electronic address:
Studies of human induced pluripotent stem cell (iPSC)-derived neurons promise important insights into neurodegenerative diseases. Here, we present a protocol for live imaging of axonal transport in glutamatergic iPSC-derived neurons (iNeurons). We describe steps for the differentiation of iPSCs into iNeurons via PiggyBac-mediated neurogenin 2 (NGN2) delivery, iNeuron culture and transfection, and the acquisition and analysis of time-lapse images.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.
Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells.
View Article and Find Full Text PDFMicroglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.
View Article and Find Full Text PDFLymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!