A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reducing Ophthalmic Health Disparities Through Transfer Learning: A Novel Application to Overcome Data Inequality. | LitMetric

Purpose: Race disparities in the healthcare system and the resulting inequality in clinical data among different races hinder the ability to generate equitable prediction results. This study aims to reduce healthcare disparities arising from data imbalance by leveraging advanced transfer learning (TL) methods.

Method: We examined the ophthalmic healthcare disparities at a population level using electronic medical records data from a study cohort (N = 785) receiving care at an academic institute. Regression-based TL models were usesd, transferring valuable information from the dominant racial group (White) to improve visual field mean deviation (MD) rate of change prediction particularly for data-disadvantaged African American (AA) and Asian racial groups. Prediction results of TL models were compared with two conventional approaches.

Results: Disparities in socioeconomic status and baseline disease severity were observed among the AA and Asian racial groups. The TL approach achieved marked to comparable improvement in prediction accuracy compared to the two conventional approaches as evident by smaller mean absolute errors or mean square errors. TL identified distinct key features of visual field MD rate of change for each racial group.

Conclusions: The study introduces a novel application of TL that improved reliability of the analysis in comparison with conventional methods, especially in small sample size groups. This can improve assessment of healthcare disparity and subsequent remedy approach.

Translational Relevance: TL offers an equitable and efficient approach to mitigate healthcare disparities analysis by enhancing prediction performance for data-disadvantaged group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697175PMC
http://dx.doi.org/10.1167/tvst.12.12.2DOI Listing

Publication Analysis

Top Keywords

healthcare disparities
12
transfer learning
8
novel application
8
visual field
8
rate change
8
asian racial
8
racial groups
8
compared conventional
8
disparities
6
healthcare
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!