Physical vapor deposition (PVD) provides a route to prepare highly stable and anisotropic organic glasses that are utilized in multi-layer structures such as organic light-emitting devices. While previous work has demonstrated that anisotropic glasses with uniaxial symmetry can be prepared by PVD, here, we prepare biaxially aligned glasses in which molecular orientation has a preferred in-plane direction. With the collective effect of the surface equilibration mechanism and template growth on an aligned substrate, macroscopic biaxial alignment is achieved in depositions as much as 180 K below the clearing point TLC-iso (and 50 K below the glass transition temperature Tg) with single-component disk-like (phenanthroperylene ester) and rod-like (itraconazole) mesogens. The preparation of biaxially aligned organic semiconductors adds a new dimension of structural control for vapor-deposited glasses and may enable polarized emission and in-plane control of charge mobility.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0174819DOI Listing

Publication Analysis

Top Keywords

biaxially aligned
12
preparation biaxially
8
aligned organic
8
organic semiconductors
8
vapor-to-glass preparation
4
aligned
4
organic
4
semiconductors physical
4
physical vapor
4
vapor deposition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!