A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synchronization of quantum communications over an optical classical communications channel. | LitMetric

Precise synchronization between a transmitter and receiver is crucial for quantum communications protocols such as quantum key distribution (QKD) to efficiently correlate the transmitted and received signals and increase the signal-to-noise ratio. In this work, we introduce a synchronization technique that exploits a co-propagating classical optical communications link and tests its performance in a free-space QKD system. Previously, existing techniques required additional laser beams or relied on the capability to retrieve the synchronization from the quantum signal itself; this approach, however, is not applicable in high channel loss scenarios. On the contrary, our method exploits classical and quantum signals locked to the same master clock, allowing the receiver to synchronize both the classical and quantum communications links by performing a clock-data-recovery routine on the classical signal. In this way, by exploiting the same classical communications already required for post-processing and key generation, no additional hardware is required, and the synchronization can be reconstructed from a high-power signal. Our approach is suitable for both satellite and fiber infrastructures, where a classical and quantum channel can be transmitted through the same link.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.500416DOI Listing

Publication Analysis

Top Keywords

quantum communications
12
classical quantum
12
synchronization quantum
8
classical communications
8
signal approach
8
classical
7
communications
6
quantum
6
synchronization
5
communications optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!