In a turbulent biological tissue, field correlations at the observation plane are found when a multimode optical incidence is used. For different multimode structures, variations of the multimode field correlations are evaluated against the biological tissue turbulence parameters, i.e., the strength coefficient of the refractive-index fluctuations, fractal dimension, characteristic length of heterogeneity, and the small length-scale factor. Using a chosen multimode content, for specific biological tissue types of liver parenchyma (mouse), intestinal epithelium (mouse), upper dermis (human), and deep dermis (mouse), field correlations are evaluated versus the strength coefficient of the refractive-index fluctuations and small length-scale factor. Again, with a chosen multimode content, behavior of the field correlations is studied against the strength coefficient of the refractive-index fluctuations for various diagonal lengths and the transverse coordinate at the observation plane. Finally, the field correlation versus the strength coefficient of the refractive-index fluctuations is reported for different single modes, which are special cases of multimode excitation. This topic is being reported in the literature for the first time, to our knowledge, and the presented results can be employed in many important biological tissue applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.500542 | DOI Listing |
ACS Biomater Sci Eng
January 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
Curr Microbiol
January 2025
College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China.
In order to identify the pathogen responsible for Hedera nepalensis leaf blight and investigate effective biocontrol strategies, samples were collected from 10 significantly infected areas at Southwest Forestry University; four to six infected leaves were gathered from each area, followed by the isolation and purification of strains from the infected plant leaves using tissue isolation and hyphae-purification techniques. We conducted an examination of the biological characteristics and compared the inhibitory effects of different concentrations of Phomopsis sp. (50%, 25%, 16.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, 79104, Freiburg, Germany.
One hundred years ago, Cell and Tissue Research was founded under the title "Zeitschrift für Zellen- und Gewebelehre," later "Zeitschrift für Zellforschung und mikroskopische Anatomie." The founders were four eminent German and Swiss cell biologists and zoologists, R. Goldschmidt, W.
View Article and Find Full Text PDFElife
January 2025
Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
A dysfunctional signaling pathway in the hippocampus has been linked to chronic pain-related memory impairment in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!