A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Multimodal Deep Learning Framework for Predicting PPI-Modulator Interactions. | LitMetric

A Multimodal Deep Learning Framework for Predicting PPI-Modulator Interactions.

J Chem Inf Model

State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: December 2023

Protein-protein interactions (PPIs) are essential for various biological processes and diseases. However, most existing computational methods for identifying PPI modulators require either target structure or reference modulators, which restricts their applicability to novel PPI targets. To address this challenge, we propose MultiPPIMI, a sequence-based deep learning framework that predicts the interaction between any given PPI target and modulator. MultiPPIMI integrates multimodal representations of PPI targets and modulators and uses a bilinear attention network to capture intermolecular interactions. Experimental results on our curated benchmark data set show that MultiPPIMI achieves an average AUROC of 0.837 in three cold-start scenarios and an AUROC of 0.994 in the random-split scenario. Furthermore, the case study shows that MultiPPIMI can assist molecular docking simulations in screening inhibitors of Keap1/Nrf2 PPI interactions. We believe that the proposed method provides a promising way to screen PPI-targeted modulators.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.3c01527DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning framework
8
ppi targets
8
ppi
5
multimodal deep
4
framework predicting
4
predicting ppi-modulator
4
interactions
4
ppi-modulator interactions
4
interactions protein-protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!