This paper describes fabrication and implementation of distributed optical fiber tip biosensor probes for simultaneously measuring label-free biomolecular interactions at multiple locations. Biosensor probes at the tip of a single-mode fiber are Fabry-Perot etalons that are functionalized with a capture layer for a specific biomolecule. A coherence multiplexing method is implemented to separate data collected from distributed biosensors in a single data stream. Multiplexing is achieved by using fiber tip biosensors of varying etalon lengths with the same or different capture layers for each biosensing channel. Experiments demonstrating simultaneous multi-channel recording of protein-to-protein interaction sensorgrams with fiber tip biosensor probes are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.500849DOI Listing

Publication Analysis

Top Keywords

biosensor probes
12
fiber biosensors
8
label-free biomolecular
8
fiber biosensor
8
fiber
5
distributed interferometric
4
interferometric fiber
4
biosensors multi-channel
4
multi-channel label-free
4
biomolecular interaction
4

Similar Publications

A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

Engineering a cpGFP-based biosensor for enhanced quantification of glycolate production in Escherichia coli.

Talanta

January 2025

Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China. Electronic address:

The growing demand for glycolate, fueled by economic development, requires the advancement of production methods. Escherichia coli (E. coli), a preferred host for glycolate production, has undergone extensive metabolic engineering to improve yield.

View Article and Find Full Text PDF

Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.

View Article and Find Full Text PDF

DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.

View Article and Find Full Text PDF

A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!