AI Article Synopsis

  • The optical chain and logger (OptiCAL) is an autonomous observatory that measures light variations beneath ice using multiple sensors.
  • Results from long-term Arctic Ocean deployments show that OptiCAL effectively captures a wide range of under-ice light levels between July and November.
  • The instrument reveals transient light features at certain depths linked to nearby ice leads, highlighting the need for precise depth-resolved light measurements.

Article Abstract

The optical chain and logger (OptiCAL) is an autonomous ice-tethered observatory equipped with multiple light sensors for mapping the variation of light with depth. We describe the instrument and present an ensemble calibration for downwelling irradiance in [µ ]. Results from a long-term deployment in the Arctic Ocean demonstrate that the OptiCAL can cover the high dynamic range of under-ice light levels from July to November and produce realistic values in terms of magnitude when compared to modeled surface irradiance. Transient features of raised light levels at specific depths associated with nearby leads in the ice underline the importance of depth-resolved light measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.502437DOI Listing

Publication Analysis

Top Keywords

high dynamic
8
dynamic range
8
light levels
8
light
5
development calibration
4
calibration high
4
range autonomous
4
autonomous ocean-light
4
ocean-light instrument
4
instrument measure
4

Similar Publications

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.

View Article and Find Full Text PDF

Self-diffusion coefficients, *, are routinely estimated from molecular dynamics simulations by fitting a linear model to the observed mean squared displacements (MSDs) of mobile species. MSDs derived from simulations exhibit statistical noise that causes uncertainty in the resulting estimate of *. An optimal scheme for estimating * minimizes this uncertainty, i.

View Article and Find Full Text PDF

Background: In Asian countries, discussing sex-related issues remains a taboo. Sexual dysfunction is not even considered a serious disorder in Pakistan.

Aim: To explore sexual dysfunction and marital satisfaction within the Pakistani context to develop supportive intervention programs.

View Article and Find Full Text PDF

Enhancing the Travel Experience for People with Visual Impairments through Multimodal Interaction: NaviGPT, A Real-Time AI-Driven Mobile Navigation System.

GROUP ACM SIGCHI Int Conf Support Group Work

January 2025

College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania, USA.

Assistive technologies for people with visual impairments (PVI) have made significant advancements, particularly with the integration of artificial intelligence (AI) and real-time sensor technologies. However, current solutions often require PVI to switch between multiple apps and tools for tasks like image recognition, navigation, and obstacle detection, which can hinder a seamless and efficient user experience. In this paper, we present NaviGPT, a high-fidelity prototype that integrates LiDAR-based obstacle detection, vibration feedback, and large language model (LLM) responses to provide a comprehensive and real-time navigation aid for PVI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!