Improving the convenience, sensitivity, and cost-effectiveness of electrochemical biosensors is crucial for advancing their clinical diagnostic applications. Herein, we presented an elegant approach to construct electrochemical aptasensors for tumor-derived exosome detection by harnessing the alterable interaction between methylene blue (MB) and DNA aptamer. In detail, the anti-EpCAM aptamer, named SYL3C, was found to exhibit a strong affinity toward MB due to the specific interaction between MB and unbound guanine bases. Thereby, SYL3C could be stained with MB to arouse a strong electrochemical signal on a gold electrode (AuE). Upon binding to EpCAM-positive exosomes, SYL3C underwent a conformational transformation. The resulting conformation, or exosomes-SYL3C complex, not only reduced the accumulation of MB on SYL3C by obstructing the accessibility of guanines to MB but also impeded the transfer of electrons from the bound MB to AuE, leading to a notable decrease in the electrochemical signal. Using MB-stained SYL3C as an electronic switch, an electrochemical aptasensor was readily established for the detection of EpCAM-positive exosome detection. Without the need for signal amplification strategies, expensive auxiliary reagents, and complex operation, this unique signal transduction mechanism alone could endow the aptasensor with ultrahigh sensitivity. A limit of detection (LOD) of 234 particles mL was achieved, surpassing the performance of most reported methods. As a proof of concept, the aptasensor was applied to analyze clinical serum samples and effectively distinguish non-small-cell lung cancer (NSCLC) patients from healthy individuals. As EpCAM exhibits broad expression in exosomes derived from different tumor sources, the developed aptasensor holds promise for diagnosing other tumor types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c03715 | DOI Listing |
Sci Rep
December 2024
Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.
The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.
View Article and Find Full Text PDFSci Rep
December 2024
CETC POTEVIO SCIENCE & TECHNOLOGY CO., LTD, Guangzhou, 510310, P.R. China.
In recent years, the hydroacoustic communication MAC (Medium Access Control) protocol has attracted wide attention. Hydroacoustic communication networks suffer from issues such as long propagation delays and rapid dynamic changes in network load, which prevent the maximization of network performance through the use of a single transmission mode. In this paper, we propose a Dynamic Switching Transmission MAC protocol called the DSTM-MAC protocol.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electronic Engineering, National University of Defense Technology, Hefei, 230000, China.
Spectrum sensing is a key technology and prerequisite for Transform Domain Communication Systems (TDCS). The traditional approach typically involves selecting a working sub-band and maintaining it without further changes, with spectrum sensing being conducted periodically. However, this approach presents two main issues: on the one hand, if the selected working band has few idle channels, TDCS devices are unable to flexibly switch sub-bands, leading to reduced performance; on the other hand, periodic sensing consumes time and energy, limiting TDCS's transmission efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electronics, Carleton University, Ottawa, ON, K1S 5B6, Canada.
In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:
N6-methyladenosine (m6A) is the most prevalent RNA modification and a multifaceted regulator capable of affecting various aspects of mRNA metabolism, thereby playing important roles in numerous physiological processes. However, it is still unknown whether, when, and to what extent m6A modulation are implicated in the immune response of an economically important aquaculture fish, half-smooth tongue sole (Cynoglossus semilaevis). Herein, we systematically profiled and characterized the m6A epitranscriptome and transcriptome in C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!