AI Article Synopsis

  • Scanning electron microscopy (SEM) is essential for analyzing materials at the nanoscale, but accurate sample repositioning remains a challenge that affects analysis quality.
  • This study developed a LEGO®-based sample positioning system to enhance precision in identifying and aligning features during SEM sessions, showing minimal displacements and reliable results across multiple repetitions.
  • The findings indicate this LEGO-based system can improve SEM analysis repeatability and accuracy, though further design optimization and application evaluations are needed for broader use in materials science research.

Article Abstract

Scanning electron microscopy (SEM) is a precious tool in materials science and morphology sciences, enabling detailed examination of materials at the nanoscale. However, precise and accurate sample repositioning during different observation sessions remains a significant challenge, impacting the quality and repeatability of SEM analyses. This study aimed to develop and evaluate a LEGO®-based sample positioning system for SEM analysis. The system was designed to consistently identify and align features across multiple repositioning cycles, maintain accurate positioning along the z-axis, minimize distortion, and provide repeatable and reliable results. The results indicated a high degree of precision and accuracy in the repositioning process, as evidenced by the minimal displacements, deviations in scaling and shearing, and the highly significant results (p < 0.001) obtained from the analysis of absolute translations and rotations. Moreover, the analyses were consistently replicated across six repetitions, underscoring the reliability of the observed results. While the findings suggest that the LEGO-based sample positioning system is promising for enhancing SEM analyses' quality and repeatability, further studies are needed to optimize the system's design and evaluate its performance in different SEM applications. Ultimately, this study contributes to the ongoing efforts to develop cost-effective, customizable, and accurate solutions for sample positioning in SEM, contributing to the advancement of materials science research and all SEM analysis requiring overtime observations of the same sample. RESEARCH HIGHLIGHTS: This study focused on the development and evaluation of a novel LEGO-based sample positioning system specifically designed for SEM analysis. One of the standout features of this system is its ability to consistently identify and align features across multiple repositioning cycles, showcasing its precision and reliability. To further understand the mechanical aspects of the SEM stage, we employed the Rambold Kontroll comparator, which provided a baseline understanding of its mechanical tolerance. The registration process results were particularly noteworthy, as they revealed high accuracy with minimal displacements. Furthermore, the consistent outcomes observed across multiple repetitions emphasize the reliability and robustness of the methods we employed in this research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24465DOI Listing

Publication Analysis

Top Keywords

lego®-based sample
8
enhancing sem
4
sem positioning
4
positioning precision
4
precision lego®-based
4
sample fitting
4
fitting system
4
system scanning
4
scanning electron
4
electron microscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!