Comparative Double Auction Approach for Peer-to-Peer Energy Trading on Multiple microgrids.

Smart Grids Sustain Energy

Insight Centre for Data Analytics, University of Galway, Galway, Ireland.

Published: November 2023

Peer-to-peer (P2P) energy trading is one of the most effective methods to increase the usage of Renewable Energy (RE) resources in the distribution network and reduce losses by eliminating long transmission and distribution lines. This research aims to enhance the efficiency of P2P energy trading by examining the suitability of four distinct double auction mechanisms: Average, McAfee, Trade Reduction and Vickrey-Clarke-Groves (VCG). We conducted a systematic evaluation of these mechanisms across various microgrid (MG) types. The study algorithm integrates user preferences, bidding strategies and time-of-use tariffs, allowing participants to indicate their willingness to pay for different energy qualities and specific time periods. Notably, both the Average and VCG mechanisms emerged as the most effective across a majority of MG setups. Specifically, the average mechanism was found to be optimal for a consumer-centric MG, while the VCG mechanism was predominantly advantageous during non-peak hours trading. However, it was observed that P2P energy trading from MG to MG was inefficient due to the lesser number of peers. In conclusion, this work offers a comprehensive solution that adeptly identifies and recommends the most fitting auction mechanisms for diverse MG configurations and usage timings, paving the way for more efficient P2P energy trading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685720PMC
http://dx.doi.org/10.1007/s40866-023-00178-xDOI Listing

Publication Analysis

Top Keywords

energy trading
20
p2p energy
16
double auction
8
auction mechanisms
8
energy
7
trading
6
comparative double
4
auction approach
4
approach peer-to-peer
4
peer-to-peer energy
4

Similar Publications

Since agriculture is a major source of greenhouse gas emissions, accurately calculating these emissions is essential for simultaneously addressing climate change and food security challenges. This paper explores the critical role of trade in transferring agricultural greenhouse gas (AGHG) emissions throughout global agricultural supply chains. We develop a detailed AGHG emission inventory with comprehensive coverage across a wide range of countries and emission sources at first.

View Article and Find Full Text PDF

The G20 countries are responsible for around 75% of the world's greenhouse gas (GHG) emissions, including the use of natural resources. In this regard, the role of globalization in achieving environmental sustainability is a relatively new topic of concern. As a result, the present study considers how globalization and natural resources affect GHG emissions, as well as the roles that renewable energy consumption and urbanization play in the G20 countries between 1990 and 2020.

View Article and Find Full Text PDF

Chicken meat production in organic systems involves free-range access where animals can express foraging and locomotor behaviours. These behaviours may promote outdoor feed intake, but at the same time energy expenditure when exploring the outdoor area. More generally, the relationship of range use with metabolism, welfare including health, growth performance and meat quality needs to be better understood.

View Article and Find Full Text PDF

RFC3 Knockdown Decreases Cervical Cancer Cell Proliferation, Migration and Invasion.

Cancer Genomics Proteomics

December 2024

Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea

Background/aim: Replication factor C subunit 3 (RFC3) is a critical component of the replication factor C complex, which is essential for DNA replication and repair. Recent studies have highlighted the RFC3's significance in various cancer types. Herein, we aimed to elucidate its biological role in cervical cancer.

View Article and Find Full Text PDF

Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice.

Metabolites

December 2024

Department of Radiation Convergence Engineering, College of Software and Digital Healthcare Convergence, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju 26493, Republic of Korea.

Background/objectives: The acute stress response affects brain metabolites closely linked to the tricarboxylic acid (TCA) cycle. This response involves time-dependent changes in hormones and neurotransmitters, which contribute to resilience and the ability to adapt to acute stress while maintaining homeostasis. This physiological mechanism of metabolic dynamics, combined with time-series analysis, has prompted the development of new methods to observe the relationship between TCA cycle-related brain metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!