Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
NiO-based electrocatalysts, known for their high activity, stability, and low cost in alkaline media, are recognized as promising candidates for the oxygen evolution reaction (OER). In parallel, atomic layer deposition (ALD) is actively researched for its ability to provide precise control over the synthesis of ultrathin electrocatalytic films, including film thickness, conformality, and chemical composition. This study examines how NiO bulk and surface properties affect the electrocatalytic performance for the OER while focusing on the prolonged electrochemical activation process. Two ALD methods, namely, plasma-assisted and thermal ALD, are employed as tools to deposit NiO films. Cyclic voltammetry analysis of ∼10 nm films in 1.0 M KOH solution reveals a multistep electrochemical activation process accompanied by phase transformation and delamination of activated nanostructures. The plasma-assisted ALD NiO film exhibits three times higher current density at 1.8 V vs RHE than its thermal ALD counterpart due to enhanced β-NiOOH formation during activation, thereby improving the OER activity. Additionally, the rougher surface formed during activation enhanced the overall catalytic activity of the films. The goal is to unravel the relationship between material properties and the performance of the resulting OER, specifically focusing on how the design of the material by ALD can lead to the enhancement of its electrocatalytic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683065 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.3c05002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!