Toward Sustainable Li-S Battery Using Scalable Cathode and Safe Glyme-Based Electrolyte.

ACS Appl Energy Mater

Graphene Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy.

Published: November 2023

The search for safe electrolytes to promote the application of lithium-sulfur (Li-S) batteries may be supported by the investigation of viscous glyme solvents. Hence, electrolytes using nonflammable tetraethylene glycol dimethyl ether added by lowly viscous 1,3-dioxolane (DOL) are herein thoroughly investigated for sustainable Li-S cells. The electrolytes are characterized by low flammability, a thermal stability of ∼200 °C, ionic conductivity exceeding 10 S cm at 25 °C, a Li transference number of ∼0.5, electrochemical stability window from 0 to ∼4.4 V vs Li/Li, and a Li stripping-deposition overpotential of ∼0.02 V. The progressive increase of the DOL content from 5 to 15 wt % raises the activation energy for Li motion, lowers the transference number, slightly limits the anodic stability, and decreases the Li/electrolyte resistance. The electrolytes are used in Li-S cells with a composite consisting of sulfur and multiwalled carbon nanotubes mixed in the 90:10 weight ratio, exploiting an optimized current collector. The cathode is preliminarily studied in terms of structure, thermal behavior, and morphology and exploited in a cell using standard electrolyte. This cell performs over 200 cycles, with sulfur loading increased to 5.2 mg cm and the electrolyte/sulfur (E/S) ratio decreased to 6 μL mg. The above sulfur cathode and the glyme-based electrolytes are subsequently combined in safe Li-S batteries, which exhibit cycle life and delivered capacity relevantly influenced by the DOL content within the studied concentration range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685327PMC
http://dx.doi.org/10.1021/acsaem.3c01966DOI Listing

Publication Analysis

Top Keywords

sustainable li-s
8
li-s batteries
8
li-s cells
8
transference number
8
dol content
8
electrolytes
5
li-s battery
4
battery scalable
4
scalable cathode
4
cathode safe
4

Similar Publications

Efficient production of recombinant hybrid mussel proteins with improved adhesion.

Int J Biol Macromol

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:

Mussel foot proteins (mfps) play important roles in surface interaction and underwater adhesion. However, limited production and the lack of adhesion of recombinant mfps have restricted their widespread use. Here, we present a general strategy for enhancing both the expression and function of mfps by connecting multiple protein fragments.

View Article and Find Full Text PDF

Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:

Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.

View Article and Find Full Text PDF

Lampreys are early jawless vertebrates that are the key to understanding the evolution of vertebrates. However, the lack of cytomic studies on multiple lamprey organs has hindered progress in this field. Therefore, the present study constructed a comprehensive cell atlas comprising 604,460 cells/nuclei and 70 cell types from 14 lamprey tissue samples.

View Article and Find Full Text PDF

The species, valued for their pharmaceutical, ornamental, and economic importance, exhibit notable rarity and endemism in the Karst areas of the Yunnan-Kweichow Plateau in China. These species face significant threats from habitat loss and fragmentation, leading to a decline in biodiversity. To mitigate these threats, the Maxent algorithm was employed to analyze current and future distribution patterns, with a particular focus on the influence of climate variables in predicting potential distribution shifts and assessing extinction risks under the optimistic SSP1-2.

View Article and Find Full Text PDF

Near complete genome assembly of Yadong trout (Salmo trutta).

Sci Data

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.

The Yadong trout (Salmo trutta), a species endemic to the Yatung River in Tibet, China, was classified as a second-class protected species in the 20th century. Now, it is considered one of the most important fishery resources in China. In this study, we assembled a near-complete genome of the S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!