AI Article Synopsis

  • * Laboratory experiments with Paracoccus denitrificans showed that denitrification in low oxic conditions leads to increased levels of harmful nitrogen oxide intermediates like nitrite and nitric oxide.
  • * This accumulation of intermediates negatively affects growth at low pH, promoting surface growth behaviors that increase genetic diversity, which enhances the evolutionary potential of these microorganisms.

Article Abstract

Denitrification in oxic environments occurs when a microorganism uses nitrogen oxides as terminal electron acceptors even though oxygen is available. While this phenomenon is well-established, its consequences on ecological and evolutionary processes remain poorly understood. We hypothesize here that denitrification in oxic environments can modify the accumulation profiles of nitrogen oxide intermediates with cascading effects on the evolutionary potentials of denitrifying microorganisms. To test this, we performed laboratory experiments with Paracoccus denitrificans and complemented them with individual-based computational modelling. We found that denitrification in low oxic environments significantly increases the accumulation of nitrite and nitric oxide. We further found that the increased accumulation of these intermediates has a negative effect on growth at low pH. Finally, we found that the increased negative effect at low pH increases the number of individuals that contribute to surface-associated growth. This increases the amount of genetic diversity that is preserved from the initial population, thus increasing the number of genetic targets for natural selection to act upon and resulting in higher evolutionary potentials. Together, our data highlight that denitrification in low oxic environments can affect the ecological processes and evolutionary potentials of denitrifying microorganisms by modifying the accumulation of nitrogen oxide intermediates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866065PMC
http://dx.doi.org/10.1111/1758-2229.13221DOI Listing

Publication Analysis

Top Keywords

oxic environments
20
denitrification low
12
low oxic
12
nitrogen oxide
12
oxide intermediates
12
evolutionary potentials
12
environments increases
8
increases accumulation
8
accumulation nitrogen
8
denitrification oxic
8

Similar Publications

Treatment and prediction of wastewater from waste transfer station in the eastern rural area of China by a combined system of anaerobic-oxic-anoxic-oxic, coagulation and adsorption.

J Environ Manage

December 2024

College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China. Electronic address:

In this study, a combined system of anaerobic-oxic-anoxic-oxic, coagulation and adsorption (AOAOCA) was used to treat the real waste transfer station (WTS) wastewater. The effects of hydraulic retention time (HRT), sludge reflux ratio (SRR), mixed liquid reflux ratio (MLRR), coagulant and zeolite on the contaminants removal efficiency were investigated. When the AOAOCA system was operated at the optimal conditions (HRT of 8 d, SRR of 70%, MLRR of 200%, PAFC as coagulant with dosage of 750 ppm and 1-3 mm zeolite with filling rate of 60%), the effluent COD, NH-N and TP could reach 82.

View Article and Find Full Text PDF

Role of intracellular storage polymers in simultaneous biological nutrient removal and resources recovery.

J Environ Manage

December 2024

Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.

Simultaneous biological nutrient removal (SBNR) using an anaerobic-anoxic-oxic phase is the key feature of advanced wastewater treatment plants (WWTPs). Removing ammonia, total nitrogen, and phosphorus concurrently with organic matter and suspended solids from wastewater is essential to meeting stringent effluent discharge standards via SBNR in WWTPs. More insight into the mechanisms of SBNR, i.

View Article and Find Full Text PDF

It is currently unclear how Pseudomonadota, a phylum that originated around the time of the Great Oxidation Event, became one of the most abundant and diverse bacterial phyla on Earth, with metabolically versatile members colonizing a wide range of environments with different O2 concentrations. Here, we address this question by studying isoprenoid quinones, which are central components of energy metabolism covering a wide range of redox potentials. We demonstrate that a dynamic repertoire of quinone biosynthetic pathways accompanied the diversification of Pseudomonadota.

View Article and Find Full Text PDF

Production of Reactive Oxygen Species during Redox Manipulation and Its Potential Impacts on Activated Sludge Wastewater Treatment Processes.

Environ Sci Technol

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China.

Reactive oxygen species (ROS) are ubiquitous in redox-fluctuating environments, exerting profound impacts on biogeochemical cycles. However, whether ROS can be generated during redox manipulation in activated sludge wastewater treatment processes (AS-WTPs) and the underlying impacts remain largely unknown. This study demonstrates that ROS production is ubiquitous in AS-WTPs due to redox manipulation and that the frequency and capacity of ROS production depend on the operating modes.

View Article and Find Full Text PDF

Contrasting Effects of Catecholate and Hydroxamate Siderophores on Molybdenite Dissolution.

Environ Sci Technol

December 2024

Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States.

Molybdenum (Mo) is essential for many enzymes but is often sequestered within minerals, rendering it not readily bioavailable. Metallophores, metabolites secreted by microorganisms and plants, promote mineral dissolution to increase the metal bioavailability. However, interactions between metallophores and Mo-bearing minerals remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: