Tanshinone IIA ameliorates the development of dermal fibrosis in systemic sclerosis.

Clin Exp Pharmacol Physiol

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China.

Published: February 2024

Objectives: We previously revealed the role of tanshinone IIA (TAN IIA) on endothelial cells and the impact of TAN IIA on the endothelial-to-mesenchymal transition in systemic sclerosis (SSc). In this study, we sought to further determine whether TAN IIA can directly act on the skin fibroblasts of scleroderma and look into its underlying anti-fibrotic mechanisms.

Methods: Bleomycin was used to establish the SSc mouse model. After TAN IIA treatment, dermal thickness, type I collagen and hydroxyproline content were measured. Primary fibroblasts were acquired from SSc patients and cultured in vitro, and the effects of TAN IIA on proliferation, apoptosis and the cell cycle of fibroblasts were detected.

Results: In a bleomycin-induced SSc model, we discovered that TAN IIA significantly improved skin thickness and collagen deposition, demonstrating a potent anti-fibrotic action. TAN IIA inhibits the proliferation of skin fibroblasts derived from SSc patients by causing G2/M cell cycle arrest and promoting apoptosis. Additionally, TAN IIA downregulated extracellular matrix gene transcription and collagen protein expression in skin fibroblasts in a dose-gradient-dependent manner. Furthermore, we showed how TAN IIA can reduce the activation of the transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are important factors in SSc.

Conclusions: In summary, these data suggest that TAN IIA can reduce SSc-related skin fibrosis by modulating the TGF-β/Smad and MAPK/ERK signalling pathways. More importantly, our results imply that TAN IIA can directly act on the skin fibroblasts of SSc, therefore, inhibiting fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.13834DOI Listing

Publication Analysis

Top Keywords

tan iia
44
skin fibroblasts
16
iia
12
tan
11
tanshinone iia
8
systemic sclerosis
8
iia directly
8
directly skin
8
ssc patients
8
cell cycle
8

Similar Publications

Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.

View Article and Find Full Text PDF

[Retracted] Tan IIA inhibits H1299 cell viability through the MDM4‑IAP3 signaling pathway.

Mol Med Rep

March 2025

Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.

Following the publication of the above paper, it was drawn to the Editors' attention by a concerned reader that certain of the western blotting data shown in Fig. 1C and D on p. 2386 were strikingly similar to data appearing in different form in a pair of other articles written by different authors at a different research institute that had already been published elsewhere prior to the submission of this paper to .

View Article and Find Full Text PDF

Membranes have been used as versatile tools for the separation of various natural products; however, the selective separation of structural analogs of natural products using membranes remains challenging. In this study, biocomposite membranes based on poly(ionic liquids) and different natural fibers (jute, cotton, or wool) were successfully prepared. Natural fibers can regulate the microstructure and improve the mechanical properties of membranes.

View Article and Find Full Text PDF

Effects of Dietary Gallic Acid on Growth Performance, Meat Quality, Antioxidant Capacity, and Muscle Fiber Type-Related Gene Expression in Broiler Chickens Challenged with Lipopolysaccharide.

Animals (Basel)

December 2024

Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.

In this study, broilers were selected as the research object to investigate the effects and mechanisms of dietary gallic acid (GA) supplementation on growth performance, meat quality, antioxidant capacity, and muscle fiber-related gene expression. A total of 750 one-day-old healthy 817 male crossbred broiler chickens were divided into five treatment groups, with six replicates per group. Birds in the control (CON) group and LPS-challenged treatment (LPS) group were fed a basal diet, and birds in the other three treatment groups received the basal diet with 150, 300, or 450 mg/kg added GA (GA150, GA300, GA450).

View Article and Find Full Text PDF

Proximity of maxillary molar palatal roots to adjacent structures for endodontic microsurgery: a cone-beam computed tomography study.

BMC Oral Health

January 2025

Beijing Yakebot Technology Co., Ltd, F-616-West Building, Yonghe Plaza, No. 28 Andingmen Dongdajie, DongCheng District, Beijing, 100007, China.

Background: The surgical complexity associated with the palatal roots of maxillary molars was considerably elevated. Previous studies on the relationships between maxillary molar roots and the maxillary sinus or cortical plates have focused on individual root observation without considering the positional relationship between buccal and palatal roots or analysing the surgical pathway of maxillary molar palatal roots. This study aimed to investigate the relationship between maxillary molar palatal roots and adjacent anatomical structures to provide a reference for performing palatal roots endodontic microsurgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!