Self S-RNase reduces the expression of two pollen-specific COBRA genes to inhibit pollen tube growth in pear.

Mol Hortic

Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Published: December 2023

Due to self-incompatibility (SI) prevents self-fertilization, natural or artificial cross-pollination has been conducted in many orchards to stabilize fruit yield. However, it is still puzzled which routes of self S-RNase arresting pollen tube growth. Herein, 17 COBRA genes were isolated from pear genome. Of these genes, the pollen-specifically expressed PbCOB.A.1 and PbCOB.A.2 positively mediates pollen tube growth. The promoters of PbCOB.A.1 and/or PbCOB.A.2 were bound and activated by PbABF.E.2 (an ABRE-binding factor) and PbC2H2.K16.2 (a C2H2-type zinc finger protein). Notably, the expressions of PbCOB.A.1, PbCOB.A.2, and PbC2H2.K16.2 were repressed by self S-RNase, suggesting that self S-RNase reduces the expression of PbCOB.A.1 and PbCOB.A.2 by decreasing the expression of their upstream factors, such as PbC2H2.K16.2, to arrest pollen tube growth. PbCOB.A.1 or PbCOB.A.2 accelerates the growth of pollen tubes treated by self S-RNase, but can hardly affect level of reactive oxygen species and deploymerization of actin cytoskeleton in pollen tubes and cannot physically interact with any reported proteins involved in SI. These results indicate that PbCOB.A.1 and PbCOB.A.2 may not relieve S-RNase toxicity in incompatible pollen tube. The information provides a new route to elucidate the arresting pollen tube growth during SI reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691131PMC
http://dx.doi.org/10.1186/s43897-023-00074-zDOI Listing

Publication Analysis

Top Keywords

pollen tube
24
tube growth
20
pbcoba1 pbcoba2
20
s-rnase reduces
8
reduces expression
8
cobra genes
8
pollen
8
arresting pollen
8
pollen tubes
8
s-rnase
6

Similar Publications

Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.

View Article and Find Full Text PDF

Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.

View Article and Find Full Text PDF

Phosphatidic Acid Signaling in Modulating Plant Reproduction and Architecture.

Plant Commun

December 2024

Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:

Article Synopsis
  • Phosphatidic acid (PA) is a type of signaling lipid in plants that plays a crucial role in responding to environmental stresses and regulating key biological processes.
  • Research on mutants lacking PA's metabolizing enzymes and various analytical techniques has shown that PA is essential in various reproductive functions, including pollen tube development and seed formation.
  • The study will review these findings to better understand how PA influences plant reproduction and structure, while also suggesting areas for future research to further clarify its mechanisms of action.
View Article and Find Full Text PDF

Pollen development and germination play a crucial role in the sexual reproduction of plants. This study analysis of transcriptional dynamics of foxtail millet pollen with other tissues and organs (ovule, glume, seedling and root) through RNA-sequencing revealed that a total of 940 genes were up-regulated in foxtail millet pollen. Based on this, we analyzed the genes involved in pollen tube growth of receptor kinases and small peptides, calcium signaling, small G proteins, vesicle transport, cytoskeleton, cell wall correlation, and transcription factors that are up-regulated in pollen.

View Article and Find Full Text PDF

Systematic investigation and validation of peanut genetic transformation via the pollen tube injection method.

Plant Methods

December 2024

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China.

Genetic transformation is a pivotal approach in plant genetic engineering. Peanut (Arachis hypogaea L.) is an important oil and cash crop, but the stable genetic transformation of peanut is still difficult and inefficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!