Background: Coat color, as a distinct phenotypic characteristic of pigs, is often subject to preference and selection, such as in the breeding process of new breed. Shanxia long black pig was derived from an intercross between Berkshire boars and Licha black pig sows, and it was bred as a paternal strain with high-quality meat and black coat color. Although the coat color was black in the F generation of the intercross, it segregated in the subsequent generations. This study aims to decode the genetic basis of coat color segregation and develop a method to distinct black pigs from the spotted in Shanxia long black pig.
Results: Only a QTL was mapped at the proximal end of chromosome 6, and MC1R gene was picked out as functional candidate gene. A total of 11 polymorphic loci were identified in MC1R gene, and only the c.67_68insCC variant was co-segregating with coat color. This locus isn't recognized by any restriction endonuclease, so it can't be genotyped by PCR-RFLP. The c.370G > A polymorphic locus was also significantly associated with coat color, and has been in tightly linkage disequilibrium with the c.67_68insCC. Furthermore, it is recognized by BspHI. Therefore, a PCR-RFLP method was set up to genotype this locus. Besides the 175 sequenced individuals, another more 1,391 pigs were genotyped with PCR-RFLP, and all of pigs with GG (one band) were black.
Conclusion: MC1R gene (c.67_68insCC) is the causative gene (mutation) for the coat color segregation, and the PCR-RFLP of c.370G > A could be used in the breeding program of Shanxia long black pig.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691012 | PMC |
http://dx.doi.org/10.1186/s12863-023-01161-2 | DOI Listing |
Foods
December 2024
Department of Microbiology, Graphic Era University, Dehradun 248001, Uttarakhand, India.
The present investigation deals with comparisons drawn among three types of different mustard seed coat colors, namely, Black (), Brown (), and White (), with respect to protein's bio-availability through pepsin digestibility, with and without the involvement of major anti-nutritional factors (glucosinolate type AITC, Allylisothiothiocyanate) and relative food functions. These are validated by means of crude protein determination, precipitated protein isolate preparation for evaluating the fat absorption capacity (FAC), emulsifying activity (EA), emulsion stability (ES), whippability, foam stability (FS), the nitrogen solubility index (NSI), and the protein dispersibility index (PDI). The results indicate that the partial removal of glucosinolates from brown mustard (0.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China.
Background/objectives: The Mongolian horse, one of the oldest and most genetically diverse breeds, exhibits a wide variety of coat colors and patterns, including both wild-type and unique features. A notable characteristic of dun Mongolian horses is the presence of Bider markings-symmetrical, black-mottled patterns observed on the shoulder blades. These markings are also seen in Przewalski's horses.
View Article and Find Full Text PDFSci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Arabella Gray delves into two new pieces of research which have simultaneously revealed the genetics behind the orange coat colour of cats.
View Article and Find Full Text PDFWorldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!