Background: Although a new generation of tomographs with a longer axial field-of-view called total-body PET have been developed, they are not widely utilized due to their high cost compared to conventional scanners. The newly designed walk-through total-body PET scanner is introduced as a high-throughput and cost-efficient alternative to total-body PET scanners, by making use of a flat panel geometry and lower cost, depth-of-interaction capable, monolithic BGO detectors. The main aim of the presented study is to evaluate through Monte Carlo simulation the system characteristics of the walk-through total-body PET scanner by comparing it with a Quadra-like total-body PET of similar attributes to the Siemens Biograph Vision Quadra.
Methods: The walk-through total-body PET is comprised of two flat detector panels, spaced 50 cm apart. Each panel, 70 [Formula: see text] 106 cm[Formula: see text] in size, consists of 280 BGO-based monolithic detectors. The Quadra-like TB-PET has been simulated based on the characteristics of the Biograph Vision Quadra, one of the most common total-body PET scanners with 106 cm of axial field-of-view, which is constructed with pixelated LSO scintillation crystals. The spatial resolution, sensitivity, count rate performance, scatter fractions, and image quality of both scanners are simulated in the GATE simulation toolkit for comparison.
Results: Due to the DOI-capable detectors used in the walk-through total-body PET, the values of the spatial resolution of this scanner were all below 2 mm along directions parallel to the panels, and reached a maximum of 3.36 mm in the direction perpendicular to the panels. This resolution is a large improvement compared to the values of the Quadra-like TB-PET. The walk-through total-body PET uses its maximum sensitivity (154 cps/kBq) for data acquisition and image reconstruction.
Conclusion: Based on the combination of very good spatial resolution and high sensitivity of the walk-through total-body PET, along with a 2.2 times lower scintillation crystal volume and 1.8 times lower SiPM surface, this scanner can be a very cost-efficient alternative for total-body PET scanners in cases where concomitant CT is not required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689648 | PMC |
http://dx.doi.org/10.1186/s40658-023-00593-0 | DOI Listing |
Cancers (Basel)
January 2025
Department of Pathology, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan.
: This study evaluates the diagnostic accuracy of [18F]fluorodeoxyglucose ([F]FDG) positron emission tomography (PET) using bone marrow biopsy (BMB) and clinical follow-up as reference standards. It further identifies predictive factors for bone marrow involvement (BMI) in non-Hodgkin lymphoma (NHL) patients. : NHL patients who underwent [F]FDG PET and BMB at diagnosis in a tertiary cancer center were included in this study.
View Article and Find Full Text PDFMed Phys
January 2025
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland.
The study aims to evaluate and compare two advanced proteomic techniques, nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS, in characterizing extracellular vesicles (EVs) from the bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF). Pulmonary diseases, driven by pollutants and infections, often necessitate detailed analysis of BALF to identify diagnostic biomarkers and therapeutic targets. EVs, which include exosomes, microvesicles, and apoptotic bodies, are isolated using filtration and ultracentrifugation, and their morphology, concentration, and size distribution are assessed through transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA).
View Article and Find Full Text PDFAnn Nucl Med
January 2025
Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.
Introduction: The intricate interplay between organs can give rise to a multitude of physiological conditions. Disruptions such as inflammation or tissue damage can precipitate the development of chronic diseases such as tumors or diabetes mellitus (DM). While both lung cancer and DM are the consequences of disruptions in homeostasis, the relationship between them is intricate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!