Broomcorn millet (Panicum miliaceum L.) is an orphan crop with the potential to improve cereal production and quality, and ensure food security. Here we present the genetic variations, population structure and diversity of a diverse worldwide collection of 516 broomcorn millet genomes. Population analysis indicated that the domesticated broomcorn millet originated from its wild progenitor in China. We then constructed a graph-based pangenome of broomcorn millet based on long-read de novo genome assemblies of 32 representative accessions. Our analysis revealed that the structural variations were highly associated with transposable elements, which influenced gene expression when located in the coding or regulatory regions. We also identified 139 loci associated with 31 key domestication and agronomic traits, including candidate genes and superior haplotypes, such as LG1, for panicle architecture. Thus, the study's findings provide foundational resources for developing genomics-assisted breeding programs in broomcorn millet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703678PMC
http://dx.doi.org/10.1038/s41588-023-01571-zDOI Listing

Publication Analysis

Top Keywords

broomcorn millet
24
broomcorn
6
millet
6
pangenome analysis
4
analysis reveals
4
reveals genomic
4
genomic variations
4
variations associated
4
associated domestication
4
domestication traits
4

Similar Publications

This study was designed to evaluate the effect of substituting alfalfa hay with graded levels panicum maximum without or with graded levels of spirulina supplementation on rumen fermentation and nutrient degradability. The evaluation was achieved through an in vitro study, rumen fluid was obtained from adult sheep aged 2 years (fed clover hay), immediately after slaughter. Experimental diets were formulated as isonitrogenous and isocaloric and contained 40% forage.

View Article and Find Full Text PDF

This study investigates the production and nutritional quality of cv. Mombasa grass under varying levels of water stress and nitrogen (N) fertilization, aiming to enhance forage production in harsh environments. Four irrigation levels (5760, 6912, 4608, and 3456 m ha year) and three N fertilizer doses (115, 57.

View Article and Find Full Text PDF
Article Synopsis
  • A major gene locus, SC9.1, was identified as the key regulator of brown seed color in broomcorn millet, a cereal crop known for its diverse seed colors.
  • Through genetic mapping and analysis of crossbred populations, researchers found that the trait is controlled by a single dominant locus located on chromosome 9.
  • The gene longmi004412 was pinpointed as the specific gene responsible for the brown seed coloration, paving the way for future advancements in crop breeding and genetic research.
View Article and Find Full Text PDF

To investigate the effects of row ratio configurations on intercropping advantages and related rhizosphere microbial communities, a field experiment involving five treatments of different rows of broomcorn millet, i.e., P1M1 (1 row of broomcorn millet intercropped with 1 row of alfalfa), P2M3, P1M2, P1M3 and broomcorn millet alone (SP), was conducted on the Loess Plateau of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!