Harnessing synthetic biology for advancing RNA therapeutics and vaccine design.

NPJ Syst Biol Appl

Pfizer, 66 Hudson Boulevard, New York, NY, 10001, USA.

Published: November 2023

Recent global events have drawn into focus the diversity of options for combatting disease across a spectrum of prophylactic and therapeutic approaches. The recent success of the mRNA-based COVID-19 vaccines has paved the way for RNA-based treatments to revolutionize the pharmaceutical industry. However, historical treatment options are continuously updated and reimagined in the context of novel technical developments, such as those facilitated through the application of synthetic biology. When it comes to the development of genetic forms of therapies and vaccines, synthetic biology offers diverse tools and approaches to influence the content, dosage, and breadth of treatment with the prospect of economic advantage provided in time and cost benefits. This can be achieved by utilizing the broad tools within this discipline to enhance the functionality and efficacy of pharmaceutical agent sequences. This review will describe how synthetic biology principles can augment RNA-based treatments through optimizing not only the vaccine antigen, therapeutic construct, therapeutic activity, and delivery vector. The enhancement of RNA vaccine technology through implementing synthetic biology has the potential to shape the next generation of vaccines and therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689799PMC
http://dx.doi.org/10.1038/s41540-023-00323-3DOI Listing

Publication Analysis

Top Keywords

synthetic biology
20
rna-based treatments
8
biology
5
harnessing synthetic
4
biology advancing
4
advancing rna
4
rna therapeutics
4
therapeutics vaccine
4
vaccine design
4
design global
4

Similar Publications

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

A chemical examination of a root extract of led to the isolation and identification of 23 compounds, including oxazole-type alkaloids and isoflavonoid derivatives. Notably, three oxazole-type alkaloids (, , and ) and two isoflavonoid derivatives ( and ) were obtained from a natural source for the first time. In addition, derived 2,5-diphenyloxazoles and their derivatives were synthesized.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Dimethyl fumarate (DMF) is an anti-inflammatory and immunoregulatory medication used to treat multiple sclerosis (MS) and psoriasis. Its skin sensitization property precludes its topical use, which is unfortunate for the treatment of psoriasis. Isosorbide di-(methyl fumarate) (IDMF), a novel derivative of DMF, was synthesized to circumvent this adverse reaction and unlock the potential of topical delivery, which could be useful for treating psoriasis in the subpopulation of psoriatic MS patients, as well as in the general population.

View Article and Find Full Text PDF

A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study.

Biotechnol Biofuels Bioprod

January 2025

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!