Keeping replication fork stable is essential for safeguarding genome integrity; hence, its protection is highly regulated. The CTC1-STN1-TEN1 (CST) complex protects stalled forks from aberrant MRE11-mediated nascent strand DNA degradation (NSD). However, the activation mechanism for CST at forks is unknown. Here, we report that STN1 is phosphorylated in its intrinsic disordered region. Loss of STN1 phosphorylation reduces the replication stress-induced STN1 localization to stalled forks, elevates NSD, increases MRE11 access to stalled forks, and decreases RAD51 localization at forks, leading to increased genome instability under perturbed DNA replication condition. STN1 is phosphorylated by both the ATR-CHK1 and the calcium-sensing kinase CaMKK2 in response to hydroxyurea/aphidicolin treatment or elevated cytosolic calcium concentration. Cancer-associated STN1 variants impair STN1 phosphorylation, conferring inability of fork protection. Collectively, our study uncovers that CaMKK2 and ATR-CHK1 target STN1 to enable its fork protective function, and suggests an important role of STN1 phosphorylation in cancer development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689503 | PMC |
http://dx.doi.org/10.1038/s41467-023-43685-2 | DOI Listing |
Eur J Med Chem
January 2025
Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic; NCBR, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic. Electronic address:
MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA.
Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence.
View Article and Find Full Text PDFCancer Metastasis Rev
December 2024
Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia.
Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations.
View Article and Find Full Text PDFbioRxiv
December 2024
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
Human RAD52 is a prime target for synthetical lethality approaches to treat cancers with deficiency in homologous recombination. Among multiple cellular roles of RAD52, its functions in homologous recombination repair and protection of stalled replication forks appear to substitute those of the tumor suppressor protein BRCA2. However, the mechanistic details of how RAD52 can substitute BRCA2 functions are only beginning to emerge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!