Bioinspired Double-Broadband Switchable Microwave Absorbing Grid Structures with Inflatable Kresling Origami Actuators.

Adv Sci (Weinh)

Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Published: January 2024

Tunable radar stealth structures are critical components for future military equipment because of their potential to further enhance the design space and performance. Some previous investigations have utilized simple origami structures as the basic adjusting components but failed to achieve the desired broadband microwave absorbing characteristic. Herein, a novel double-broadband switchable microwave absorbing grid structure has been developed with the actuators of inflatable Kresling origami structures. Geometric constraints are derived to endow a bistable feature with this origami configuration, and the stable states are switched by adjusting the internal pressure. An ultra-broadband microwave absorbing structure is proposed with a couple of complementary microwave stealth bands, and optimized by a particle swarm optimization algorithm. The superior electromagnetic performance results from the mode switch activating different absorbing components at corresponding frequencies. A digital adjusting strategy is applied, which effectively achieves a continuously adjusting effect. Further investigations show that the proposed structure possesses superior robustness. In addition, minimal interactions are found between adjacent grid units, and the electromagnetic performance is mainly related to the duty ratio of the units in different states. They have enhanced the microwave absorbing performance of grid structures through a tunable design, a provided a feasible paradigm for other tunable absorbers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811514PMC
http://dx.doi.org/10.1002/advs.202306119DOI Listing

Publication Analysis

Top Keywords

microwave absorbing
20
double-broadband switchable
8
switchable microwave
8
absorbing grid
8
grid structures
8
inflatable kresling
8
kresling origami
8
origami structures
8
electromagnetic performance
8
microwave
6

Similar Publications

Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage.

Materials (Basel)

December 2024

Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.

Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.

View Article and Find Full Text PDF

Synthesis, Electrical Conductivity, and Wave-Absorption Performances of Bamboo-Based Composites Co-Doped with Graphene Oxide and Polyaniline.

Polymers (Basel)

December 2024

Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China.

Bamboo was carbonized and further modified via co-doping with graphene oxide (GO) and polyaniline (PANI) to prepare microwave absorption composites (GO/PANI/CB) by in situ polymerization of 1R-(-)-Camphorsulfonic acid (L-CSA). The conductivity of GO/PANI/CB reached 2.17 ± 0.

View Article and Find Full Text PDF

In this paper, a microwave thermal imaging system (MTIS) has been presented for debonding detection of radar absorbing materials (RAMs). First, an overview of the mechanism underlying microwave heating and the fundamental principle of defect detection within RAMs is presented. Then, a multifunctional MTIS capable of performing both microwave lock-in thermography (MLIT) and long-pulse microwave thermography (LPMT) has been introduced, specifically tailored for the in situ inspection of RAMs.

View Article and Find Full Text PDF

This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.

View Article and Find Full Text PDF

In this study, CO reacted with a curing agent through nucleophilic addition to form ammonium salts, enabling the stable capture and internal release of CO, which achieved gas-phase nucleation and foaming. Additionally, the introduction of wave-absorbing agents improved the absorption mechanism and promoted uniform foaming. This nucleation-free foaming process relies on the induced growth of gas nuclei and the synergistic effect of the wave-absorbing agents, effectively preventing the uneven foaming issues caused by traditional nucleating agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!