Restoring Endoplasmic Reticulum Calcium Stores in Aged Epidermis Improves the Epidermal Calcium Gradient and Enhances FLG Expression.

J Invest Dermatol

Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA; Department of Dermatology, University of California San Francisco, San Francisco, California, USA; Northern California Institute for Research and Education, San Francisco, California, USA. Electronic address:

Published: May 2024

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2023.10.028DOI Listing

Publication Analysis

Top Keywords

restoring endoplasmic
4
endoplasmic reticulum
4
reticulum calcium
4
calcium stores
4
stores aged
4
aged epidermis
4
epidermis improves
4
improves epidermal
4
epidermal calcium
4
calcium gradient
4

Similar Publications

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Governed by the unfolded protein response (UPR), the ability to counteract endoplasmic reticulum (ER) stress is critical for maintaining cellular homeostasis under adverse conditions. Unresolved ER stress leads to cell death through mechanisms that are yet not completely known. To identify key UPR effectors involved in unresolved ER stress, we performed an ethyl methanesulfonate (EMS) suppressor screen on the Arabidopsis mutant, which is impaired in activating cytoprotective UPR pathways.

View Article and Find Full Text PDF

Protein N-glycosylation is a cotranslational modification that takes place in the endoplasmic reticulum (ER). Disruption of this process can result in accumulation of misfolded proteins, known as ER stress. In response, the unfolded protein response (UPR) restores proteostasis or responds by controlling cellular fate, including increased expression of activating transcription factor 4 (ATF4) that can lead to apoptosis.

View Article and Find Full Text PDF

Endoplasmic reticulum stress in liver fibrosis: Mechanisms and therapeutic potential.

Biochim Biophys Acta Mol Basis Dis

January 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China. Electronic address:

This paper reviews the important role of endoplasmic reticulum stress in the patho mechanism of liver fibrosis and its potential as a potential target for the treatment of liver fibrosis. Liver fibrosis is the result of sustained inflammation and injury to the liver due to a variety of factors, triggering excessive deposition of extracellular matrix and fibrous scar formation, which in turn leads to loss of liver function and a variety of related complications. Endoplasmic reticulum stress is one of the characteristics of chronic liver disease and is closely related to the pathological process of chronic liver disease, including alcohol-related liver disease, viral hepatitis, and liver fibrosis.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress is a crucial factor in the progression of obesity-related type 2 diabetes (diabesity), contributing to skeletal muscle (SKM) dysfunction, calcium imbalance, metabolic inflexibility, and muscle atrophy. The ER and mitochondria together regulate intracellular calcium levels, and melatonin, a natural compound with antioxidant properties, may alleviate these challenges. Our previous research showed that melatonin raises intracellular calcium and preserves muscle structure by enhancing mitochondrial function in obese diabetic rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!