Premenstrual dysphoric disorder (PMDD) is a periodic psychiatric disorder with high prevalence in women of childbearing age, seriously affecting patients' work and life. Currently, the international first-line drugs for PMDD have low efficiency and increased side effects. Paeonol, a major component of the traditional Chinese medicine Cortex Moutan, has been applied in treating PMDD in China with satisfactory results, but the therapeutic mechanism is not fully understood. This study aims to evaluate the therapeutic effects and pharmacological mechanisms of paeonol on the main psychiatric symptoms and hippocampal damage in PMDD. We established a premenstrual irritability rat model by the resident-intruder paradigm and performed elevated plus maze and social interactions. And we employed the HE and Nissl staining techniques to observe the therapeutic effect of paeonol on hippocampal damage in PMDD rats. Subsequently, Elisa, qRT-PCR Array, Western Blotting, and cell models were utilized to elucidate the underlying molecular mechanisms through which paeonol intervenes in treating PMDD. In this study, we demonstrated the therapeutic effects of paeonol on irritability, anxiety, and social withdrawal behaviors in rats. In addition, we found that paeonol significantly reduced the serum corticosterone (CORT) level, improved hippocampal morphological structure and neuron number, and reduced hippocampal neuron apoptosis in PMDD rats. Paeonol reduced GRM5, GABBR2, β-arrestin2, and GRK3 expression levels in hippocampal brain regions of PMDD rats and activated the cAMP/PKA signaling pathway. Inhibitor cell experiments showed that paeonol specifically ameliorated hippocampal injury by modulating the β-arrestin2/PDE4-cAMP/PKA signaling pathway. The present study demonstrates, for the first time, that paeonol exerts a therapeutic effect on periodic psychotic symptoms and hippocampal injury in PMDD through inhibiting GRM5/GABBR2/β-arrestin2 and activating cAMP-PKA signaling pathway. These findings enhance our understanding of the pharmacological mechanism underlying paeonol and provide a solid scientific foundation for its future clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2023.110830DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
pmdd rats
12
paeonol
11
pmdd
9
hippocampal
8
inhibiting grm5/gabbr2/β-arrestin2
8
grm5/gabbr2/β-arrestin2 activating
8
activating camp-pka
8
camp-pka signaling
8
premenstrual irritability
8

Similar Publications

Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste.

Waste Manag

January 2025

Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:

Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.

View Article and Find Full Text PDF

Liver-Secreted Extracellular Vesicles Promote Cirrhosis-Associated Skeletal Muscle Injury Through mtDNA-cGAS/STING Axis.

Adv Sci (Weinh)

January 2025

Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.

Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!