Biomass-related PM induced inflammatory microenvironment via IL-17F/IL-17RC axis.

Environ Pollut

State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International BioIsland, Guangzhou, Guangdong, 510000, China. Electronic address:

Published: February 2024

Biomass exposure is a significant environmental risk factor for COPD, but the underlying mechanisms have not yet been fully elucidated. Inflammatory microenvironment has been shown to drive the development of many chronic diseases. Pollution exposure can cause increased levels of inflammatory factors in the lungs, leading to an inflammatory microenvironment which is prevalent in COPD. Our findings revealed that IL-17F was elevated in COPD, while exposure to biomass led to increased expression of IL-17F in both alveolar epithelial and macrophage cells in mice. Blocking IL-17F could alleviate the lung inflammation induced by seven days of biomass exposure in mice. We employed a transwell co-culture system to simulate the microenvironment and investigate the interactions between MLE-12 and MH-S cells. We demonstrated that anti-IL-17F antibody attenuated the inflammatory responses induced by BRPM in MLE-12 and MH-S co-cultured with BRPM-MLE-12, which reduced inflammatory changes in microenvironment. We found that IL-17RC, an important receptor for IL-17F, played a key role in the interactions. Knockout of IL-17RC in MH-S resulted in inhibited IL-17F signaling and attenuated inflammatory response after MH-S co-culture with BRPM-MLE-12. Our investigation suggests that BRPM induces lung epithelial-macrophage interactions via IL-17F/IL-17RC axis regulating the inflammatory response. These results may provide a novel strategy for effective prevention and treatment of biomass-related COPD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.123048DOI Listing

Publication Analysis

Top Keywords

inflammatory microenvironment
12
inflammatory
8
il-17f/il-17rc axis
8
biomass exposure
8
mle-12 mh-s
8
attenuated inflammatory
8
inflammatory response
8
microenvironment
5
il-17f
5
biomass-related induced
4

Similar Publications

Mitophagy, the selective degradation of mitochondria by autophagy, plays a crucial role in cancer progression and therapy response. This study aims to elucidate the role of mitophagy-related genes (MRGs) in cutaneous melanoma (CM) through single-cell RNA sequencing (scRNA-seq) and machine learning approaches, ultimately developing a predictive model for patient prognosis. The scRNA-seq data, bulk transcriptomic data, and clinical data of CM were obtained from publicly available databases.

View Article and Find Full Text PDF

Baicalin ameliorates neuroinflammation by targeting TLR4/MD2 complex on microglia via PI3K/AKT/NF-κB signaling pathway.

Neuropharmacology

January 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

This study aims to elucidate the target and mechanism of baicalin, a clinically utilized drug, in the treatment of neuroinflammatory diseases. Neuroinflammation, characterized by the activation of glial cells and the release of various pro-inflammatory cytokines, plays a critical role in the pathogenesis of various diseases, including spinal cord injury (SCI). The remission of such diseases is significantly dependent on the improvement of inflammatory microenvironment.

View Article and Find Full Text PDF

Oral mucosal wounds are more prone to inflammation due to direct exposure to various microorganisms. This can result in pain, delayed healing, and other complications, affecting patients' daily activities such as eating and speaking. Consequently, the overall quality of life for patients is significantly reduced.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!