Background & Aims: Metabolic dysfunction-associated steatohepatitis (MASH) is a common chronic liver disease worldwide. No effective pharmacologic therapies for MASH have been developed; to develop such promising drugs, the underlying mechanisms regulating MASH need to be elucidated. Here, we aimed to determine the role of ovarian tumor domain-containing protein 5 (OTUD5) in MASH progression and identify a specific mechanism.
Methods: The expression levels of OTUD subfamily under palmitic acid/oleic acid (PAOA) stimulation were screened. OTUD5 expression was assessed in human liver tissues without steatosis, those with simple steatosis, and those with MASH. MASH models were developed in hepatocyte-specific Otud5-knockout mice that were fed high-fat high-cholesterol and high-fat high-cholesterol plus high-fructose/sucrose diet for 16 weeks.
Results: The expression of OTUD5 was down-regulated in fatty liver and was negatively related to the progression of MASH. Lipid accumulation and inflammation were exacerbated by Otud5 knockdown but attenuated by Otud5 overexpression under PAOA treatment. Hepatocyte-specific Otud5 deletion markedly exacerbated steatosis, inflammation, and fibrosis in the livers of 2 MASH mouse models. We identified voltage-dependent anion channel 2 (VDAC2) as an OTUD5-interacting partner; OTUD5 cleaved the K48-linked polyubiquitin chains from VDAC2, and it inhibited subsequent proteasomal degradation. The anabolic effects of OTUD5 knockdown on PAOA-induced lipid accumulation were effectively reversed by VDAC2 overexpression in primary hepatocytes. Metabolomic results revealed that VDAC2 is required for OTUD5-mediated protection against hepatic steatosis by maintaining mitochondrial function.
Conclusions: OTUD5 may ameliorate MASH progression via VDAC2-maintained mitochondrial homeostasis. Targeting OTUD5 may be a viable MASH-treatment strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827517 | PMC |
http://dx.doi.org/10.1016/j.jcmgh.2023.11.014 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, P. R. China.
Defective clearance and accumulation of α-synuclein (α-Syn) is the key pathogenic factor in Parkinson's disease (PD). Recent studies emphasize the importance of E3 ligases in regulating the degradation of α-Syn. However, the molecular mechanisms by which deubiquitinases regulate α-Syn degradation are scarcely studied.
View Article and Find Full Text PDFNat Commun
October 2024
Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
Appropriate repair of damaged DNA and the suppression of DNA damage responses at telomeres are essential to preserve genome stability. DNA damage response (DDR) signaling consists of cascades of kinase-driven phosphorylation events, fine-tuned by proteolytic and regulatory ubiquitination. It is not fully understood how crosstalk between these two major classes of post-translational modifications impact DNA repair at deprotected telomeres.
View Article and Find Full Text PDFEur J Pharmacol
November 2024
Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Clinical Medicine and Cancer Research Center of Shaanxi Province, Xi'an, 710061, Shaanxi, China. Electronic address:
Gastric cancer (GC) is a common malignant disease that has a fifth highest incidence and fourth highest mortality worldwide. The Warburg effect is a common phenomenon observed in tumors, which suggests that tumor cells would enhance glucose uptake by overexpressing multiple glucose transporters. Sodium glucose transporter 2 (SGLT2) is one of glucose transporters which highly expressed in several cancers, but its role in gastric cancer is still unclear.
View Article and Find Full Text PDFCancer Lett
November 2024
Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China. Electronic address:
Ferroptosis is a newly defined form of programmed cell death characterized by iron-dependent lipid peroxide accumulation and is associated with the progression of cancer. Solute carrier family 7 member 11 (SLC7A11), a key component of cystine/glutamate antiporter, has been characterized as a critical regulator of ferroptosis. Although many studies have established the transcriptional regulation of SLC7A11, it remains largely unknown how the stability of SLC7A11 is regulated in cancers, especially in triple-negative breast cancer (TNBC).
View Article and Find Full Text PDFNat Commun
June 2024
Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
Recent studies have shown the crucial role of podocyte injury in the development of diabetic kidney disease (DKD). Deubiquitinating modification of proteins is widely involved in the occurrence and development of diseases. Here, we explore the role and regulating mechanism of a deubiquitinating enzyme, OTUD5, in podocyte injury and DKD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!