Plants have developed a number of protective mechanisms to respond to salt and other stresses. Previous studies have shown that the basic helix-loop-helix (bHLH) transcription factor AhbHLH121 plays a crucial role in the response to abiotic stresses in peanut, but the mechanisms and functions related to AhbHLH121 remain unclear. In the current research, AhbHLH121 was induced by salt treatment. Overexpression of AhbHLH121 improved salt resistance, whereas silencing AhbHLH121 resulted in the inverse correlation. Our results also demonstrated that overexpression of AhbHLH121 results in greater activity of antioxidant enzymes under stress condition by promoting the expression of the genes for peroxidase, catalase and superoxide dismutase (AhPOD, AhCAT and AhSOD), indicating enhanced scavenging of reactive oxygen species. Further analysis including Yeast one-hybrid (Y1H) assays and electrophoretic mobility shift assays (EMSAs), suggested that AhbHLH121 can bind directly to the G/E-box regions of the AhPOD, AhCAT and AhSOD promoters, thereby promoting their expression and leading to improved antioxidant enzyme activity. Our research improves the understanding of the mechanisms that allow this peanut bHLH transcription factor to improve abiotic tolerance, and provides valuable gene resources for breeding programs to promote salt stress resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.128492 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!