Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689402 | PMC |
http://dx.doi.org/10.1136/bcr-2023-258173 | DOI Listing |
Front Cell Dev Biol
January 2025
Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China.
Background: Vessel segmentation in fundus photography has become a cornerstone technique for disease analysis. Within this field, Ultra-WideField (UWF) fundus images offer distinct advantages, including an expansive imaging range, detailed lesion data, and minimal adverse effects. However, the high resolution and low contrast inherent to UWF fundus images present significant challenges for accurate segmentation using deep learning methods, thereby complicating disease analysis in this context.
View Article and Find Full Text PDFRetina
January 2025
Shiley Eye Institute, University of California, San Diego, CA, USA.
Purpose: To characterize retinal vessel whitening (RVW) in Retinitis Pigmentosa (RP).
Methods: Single-center cross-sectional study. Review of clinical notes of clinically confirmed RP patients was performed followed by grading ultra-widefield imaging.
Transl Vis Sci Technol
January 2025
Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
Purpose: To compare the assessment of clinically relevant retinal and choroidal lesions as well as optic nerve pathologies using a novel three-wavelength ultra-widefield (UWF) scanning laser ophthalmoscope with established retinal imaging techniques for ophthalmoscopic imaging.
Methods: Eighty eyes with a variety of retinal and choroidal lesions were assessed on the same time point using Topcon color fundus photography (CFP) montage, Optos red/green (RG), Heidelberg SPECTRALIS MultiColor 55-color montage (MCI), and novel Optos red/green/blue (RGB). Paired images of the optic nerve, retinal, or choroidal lesions were initially diagnosed based on CFP imaging.
Taiwan J Ophthalmol
December 2024
Singapore National Eye Centre, Singapore Eye Research Institute, Singapore.
Inherited retinal degeneration (IRD) is a heterogeneous group of genetic disorders of variable onset and severity, with vision loss being a common endpoint in most cases. More than 50 distinct IRD phenotypes and over 280 causative genes have been described. Establishing a clinical phenotype for patients with IRD is particularly challenging due to clinical variability even among patients with similar genotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!