Background: Measurable residual disease (MRD) test positivity during and after treatment in patients with acute myeloid leukemia (AML) has been associated with higher rates of relapse and worse overall survival. Current approaches for MRD testing are not standardized leading to inconsistent results and poor prognostication of disease. Pertinent studies evaluating AML MRD testing at specific times points, with various therapeutics and testing methods are presented.
Summary: AML is a set of diseases with different molecular and cytogenetic characteristics and is often polyclonal with evolution over time. This genetic diversity poses a great challenge for a single AML MRD testing approach. The current ELN 2021 MRD guidelines recommend MRD testing by quantitative polymerase chain reaction in those with a validated molecular target or multiparameter flow cytometry (MFC) in all other cases. The benefit of MFC is the ability to use this method across disease subsets, at the relative expense of suboptimal sensitivity and specificity. AML MRD detection may be improved with molecular methods. Genetic characterization at AML diagnosis and relapse is now standard of care for appropriate therapeutic assignment, and future initiatives will provide the evidence to support testing in remission to direct clinical interventions.
Key Messages: The treatment options for patients with AML have expanded for specific molecular subsets such as FLT3 and IDH1/2 mutated AML, with development of novel agents for NPM1 mutated or KMT2A rearranged AML ongoing, but also due to effective venetoclax-combinations. Evidence regarding highly sensitive molecular MRD detection methods for specific molecular subgroups, in the context of these new treatment approaches, will likely shape the future of AML care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963159 | PMC |
http://dx.doi.org/10.1159/000535463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!