Hypothesis: Hetero-aggregation of oppositely charged colloidal particles with controlled architectural and interactional asymmetry allows modifying gel nanostructure and properties. We hypothesize the relative size ratio between cationic nanospheres and varied-size anionic two-dimensional nanoclays will influence the gel formation mechanisms and resulting rheological performance.
Experiments: Hybrid colloidal gels formed via hetero-aggregation of cationic gelatin nanospheres (∼400 nm diameter) and five types of nanoclays with similar 1 nm thickness but different lateral sizes ranging from ∼ 30 nm to ∼ 3000 nm. Structure-property relationships were elucidated using a suite of techniques. Microscopy and scattering probed gel nanostructure and particle configuration. Rheology quantified linear and non-linear viscoelastic properties and yielding behavior. Birefringence and polarized imaging assessed size-dependent nanoclay alignment during shear flow.
Findings: Nanoclay size ratio relative to nanospheres affected the gelation process, network structure, elasticity, yielding, and shear response. Gels with comparably sized components showed maximum elasticity, while yield stress depended on nanoclay rotational mobility. Shear-induced nanoclay alignment was quantified by birefringence, which is more pronounced for larger nanoclay. Varying nanoclay size and interactions with nanospheres controlled dispersion, aggregation, and nematic ordering. These findings indicate that architectural and interactional asymmetry enables more control over gel properties through controlled assembly of anisotropic building blocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.11.135 | DOI Listing |
Anal Chim Acta
February 2025
Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:
Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Currently, the development of high-performance adsorbents for the removal of nanoplastics in complex aquatic environments is challenging. In this study, a functionalized polyethyleneimine-phosphorylated microcrystalline cellulose/MoS (PEI-PMCC/MoS) hybrid aerogel was prepared and applied to remove carboxyl-modified polystyrene (PS-COOH) nanoplastics from the aqueous solution. Benefiting from the introduced functional groups and the expanded lamellar structure in MoS nanosheets as well as the highly porous 3D structure of the aerogel, PEI-PMCC/MoS demonstrated high efficiency in PS-COOH nanoplastics removal, achieving a 402.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China. Electronic address:
Defect engineering is considered one of the most powerful strategies for regulating the catalytic activity of electrocatalysts. A deep understanding of the defect-involved mechanism in electrocatalytic process is of great importance but remains a challenging task. In this study, an anionic Se-vacancy (V) was introduced into iron diselenide (FeSe) nanoarrays, enabling the catalyst to exhibit improved electrocatalytic performance for sulfion oxidation reaction (SOR).
View Article and Find Full Text PDFSmall Methods
January 2025
National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
Optoelectronic devices combining single-layer graphene (SLG) and colloidal semiconducting nanocrystal (NC) heterojunctions have recently gained significant attention as efficient hybrid photodetectors. While most research has concentrated on systems using heavy metal-based semiconductor NCs, there is a need for further exploration of environmentally friendly nanomaterials, such as CuS. Chemical ligands play a crucial role in these hybrid photodetectors, as they enable charge transfer between the NCs and SLG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!