Increasing the security by the multilevel authentication mechanism was the most significant challenge in recent years for the development of anticounterfeiting inks based on photoluminescent nanomaterials. For this purpose, the greatest strategy is the use of multicomponent organic materials and a combination of Förster resonance energy transfer (FRET) with the intelligent behavior of photochromic compounds like spiropyran. Here, the hydroxyl-functionalized polymer nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different compositions (0-30 wt % of HEMA). Results illustrated that the size of the nanoparticles changed from 64 to 204 nm, and a morphology evolution from spherical to Janus shape was observed by increasing the concentration of HEMA. Photoluminescent inks with red, green, and blue (RGB) fluorescence emissions were prepared by modification of nanoparticles containing 15 wt % of HEMA with spiropyran, fluorescein, and coumarin, respectively. To develop dual-color and multicolor photoluminescent inks that display static and dynamic emission, RGB latex samples were mixed together in different ratios and printed on cellulosic paper. Results display that the fluorescence emission of developed inks can be photoswitched between different statuses, including white to blue, green to blue, green to red/orange, purple to pink, and white to pink, utilizing the FRET phenomenon, photochromism, and a combination of both phenomena. Samples containing spiropyran displayed dynamic color changes in the emission to red, orange, and pink depending on the composition. Hence, developed dual-color and multicolor photoluminescent inks were used for printing of security tags and also painting of some hand-drawn artworks, which obtained results indicating high printability, maximum fluorescence intensity, high resolution, and fast responsivity upon UV-light irradiations of 254 nm (for static mode) and 365 nm (for dynamic mode). In addition, the multilevel authentication mechanism by a static emission under UV-light irradiation of 254 nm, a dynamic emission under UV-light irradiation of 365 nm, and photochromic color change was observed, resulting in increasing the security of developed inks. Actually, developed multicolor photoluminescent inks are the most efficient candidates for developing a new category of chameleon-like high-security anticounterfeiting inks that have tunable optical properties and complex multilevel authentication mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c14144 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China.
Low-dimensional lead-free metal halide perovskites are highly attractive for cutting-edge optoelectronic applications. Herein, we report a class of scandium-based double perovskite crystals comprising antimony dopants that can generate multiexcitonic emissions in the ultraviolet, blue, and yellow spectral regions. Owing to the zero-dimensional nature of the crystal lattice that minimizes energy crosstalk, different excitonic states in the crystals can be selectively excited by ultraviolet light, X-ray irradiation, and mechanical action, enabling dynamic control of steady/transient-state spectral features by modulating the excitation modes.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Republic of Korea.
Self-assembled configurations are versatile for applications in which liquid-mediated phenomena are employed to ensure that static or mild physical interactions between assembling blocks take advantage of local energy minima. For granular materials, however, a particle's momentum in air leads to random collisions and the formation of disordered phases, eventually producing jammed configurations when densely packed. Therefore, unlike fluidic self-assembly, the self-assembly of dry particles typically lacks programmability based on density and ordering symmetry and has thus been limited in applications.
View Article and Find Full Text PDFAdv Mater
December 2024
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility.
View Article and Find Full Text PDFBehav Sci (Basel)
October 2024
Department of Electrical and Computer Engineering, College of Engineering, University of California, Davis, CA 95616, USA.
In response to calls for research on the psychological mechanisms, such as perceptions and attitudes toward corporate citizenship, in promoting positive outcomes at work, this research presents a novel approach by empirically testing a calling conditioned path model from P perception of corporate CSR (P-CSR) to work engagement via meaningfulness under the theoretical framework of self-determination theory. Survey data collected from 224 corporate employees in the US were tested using the PROCESS plugin (version 4.3) in SPSS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!