Despite the intensive research in room-temperature phosphorescent (RTP) polymers, the synthesis of RTP polymers with well-defined macromolecular structures and multiple functions remains a challenge. Herein, reversible deactivation radical polymerization was demonstrated to offer a gradient copolymer (GCP) architecture with controlled heterogeneities, which combines hard segment and flexible segment. The GCPs would self-assemble into a multiphase nanostructure, featuring tunable stretchability, excellent RTP performance, and intrinsic healability without compromising light emission under stretching. The mechanical performance is tunable on demand with elongation at break ranging from 5.0% to 221.7% and Young's modulus ranging from 0.5 to 225.0 MPa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c10673 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!