The 2024 Nucleic Acids Research database issue contains 180 papers from across biology and neighbouring disciplines. There are 90 papers reporting on new databases and 83 updates from resources previously published in the Issue. Updates from databases most recently published elsewhere account for a further seven. Nucleic acid databases include the new NAKB for structural information and updates from Genbank, ENA, GEO, Tarbase and JASPAR. The Issue's Breakthrough Article concerns NMPFamsDB for novel prokaryotic protein families and the AlphaFold Protein Structure Database has an important update. Metabolism is covered by updates from Reactome, Wikipathways and Metabolights. Microbes are covered by RefSeq, UNITE, SPIRE and P10K; viruses by ViralZone and PhageScope. Medically-oriented databases include the familiar COSMIC, Drugbank and TTD. Genomics-related resources include Ensembl, UCSC Genome Browser and Monarch. New arrivals cover plant imaging (OPIA and PlantPAD) and crop plants (SoyMD, TCOD and CropGS-Hub). The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). Over the last year the NAR online Molecular Biology Database Collection has been updated, reviewing 1060 entries, adding 97 new resources and eliminating 388 discontinued URLs bringing the current total to 1959 databases. It is available at http://www.oxfordjournals.org/nar/database/c/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767945 | PMC |
http://dx.doi.org/10.1093/nar/gkad1173 | DOI Listing |
Acta Parasitol
January 2025
Laboratory of Morpho-Molecular Integration and Technologies, Federal Rural University of the Amazon (UFRA), Belém, State of Pará, Brazil.
Purpose: This work described a new species of Ceratomyxa, based on morphological and phylogenetic analyzes of myxospores collected from the gallbladder of the fish Astyanax mexicanus.
Methods: Sixty-two specimens were captured, between December 2022 and February 2024, in the Flexal River, in the community of Tessalônica, state of Amapá. The specimens were transported alive to the Laboratory of Morphophysiology and Animal Health, at the State University of Amapá, where the studies were carried out.
Sci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFNat Commun
January 2025
Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.
The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, Washington University in St. Louis, MO, United States. Electronic address:
Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria. Electronic address:
Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!