In recent times, the incorporation of metal oxide nanoparticles with organic dyes has piqued the interest of numerous researchers due to their diverse applications under visible light instead of UV radiation. This investigation employed a three-step methodology to fabricate cyanidin-sensitized silver-doped zinc oxide nanoparticles (Ag-ZnO@Cy). Initially, cyanidin dye was extracted from fresh black mulberry fruit, followed by the eco-friendly synthesis of Ag-ZnO nanoparticles (Ag-ZnONPs). The successful integration of the prepared cyanidin dye with Ag-ZnONPs was achieved through a straightforward, environmentally benign, and cost-efficient procedure. The resultant ternary composite underwent comprehensive characterization and confirmation utilizing various techniques, such as SEM, FT-IR, EDX, DRS, elemental mapping, and XRD. The experimental results for Ag-ZnONPs@Cy demonstrated that the nanocrystalline wurtzite exhibited spherical shapes with an average crystal size of 27.42 nm. Moreover, the photocatalytic activity of the synthesized Ag-ZnONPs@Cy was meticulously investigated under blue LED light irradiation. This inquiry encompassed examinations of catalyst amount, regeneration, stability, reusability, and the influence of light source on the hydrogenation of nitroarenes to the corresponding aminoarenes. The findings shed light on the potential of this composite for diverse photocatalytic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687522 | PMC |
http://dx.doi.org/10.1039/d3ra06448d | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
Pt-CeO nanosponges (1 wt% Pt) with high surface area (113 m g), high pore volume (0.08 cm g) and small-sized Pt nanoparticles (1.8 ± 0.
View Article and Find Full Text PDFRSC Adv
January 2025
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.
Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!