B7-H6 is a novel immune checkpoint molecule that triggers NK cell cytotoxicity, but the role of N-glycosylation in B7-H6 is poorly understood. We here identified the existence of N-glycosylation of B7-H6 in different cell lines and exogenous expression cells by PNGase F digestion and tunicamycin blockage. Subsequently, we demonstrated that B7-H6 contains 6 functional N-linked glycosylation sites by single site mutation and electrophoresis. Phylogenetical and structural analysis revealed that N43 and N208 glycan are conserved in jawed vertebrates and may thus contribute more to the biological functions. We further demonstrated that N43 and N208 glycosylation are essential for B7-H6 to trigger NK cell activation. Mechanistically, we found that N43 and N208 glycan contributed to the stability and membrane expression of B7-H6 protein. Lack of N208 glycosylation led to membrane B7-H6 shedding, while N43 mutation resulted in impaired B7-H6/NKp30 binding affinity. Together, our findings highlight the significance of N-linked glycosylation in B7-H6 biological functions and suggest potential targets for modulating NK cell-mediated immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684670PMC
http://dx.doi.org/10.3389/fimmu.2023.1255667DOI Listing

Publication Analysis

Top Keywords

n-linked glycosylation
12
n43 n208
12
b7-h6
9
n-glycosylation b7-h6
8
n208 glycan
8
biological functions
8
n208 glycosylation
8
glycosylation
5
deficiency n-linked
4
glycosylation impairs
4

Similar Publications

Hereditary angioedema is an autosomal dominant disorder caused by defects in C1-esterase inhibitor (C1-INH), resulting in poorly controlled activation of the kallikrein-kinin system and bradykinin overproduction. C1-INH is a heavily glycosylated protein in the serine protease inhibitor (SERPIN) family, yet the role of these glycosylation sites remains unclear. To elucidate the functional impact of N-glycosylation in the SERPIN domain of C1-INH, we engineered four sets consisting of 26 variants at or near the N-linked sequon (NXS/T).

View Article and Find Full Text PDF

Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.

View Article and Find Full Text PDF

Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.

View Article and Find Full Text PDF

Unlabelled: The choice of media and feeds significantly influences the performance of Chinese Hamster Ovary (CHO) mammalian cell cultures in producing desired biologics like monoclonal antibodies (mAb). Sub-optimal nutrient feed/media composition can severely impact cell proliferation and the quality of the final mAb product. For instance, proper protein glycosylation, crucial for mAb stability, safety, and efficacy, heavily relies on cell culture conditions.

View Article and Find Full Text PDF

IL-8 Downregulation Mediates the Beneficial Effects of Infection-Induced Fever on Breast Cancer Prognosis.

J Inflamm Res

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.

Purpose: Previous studies have reported that infection-induced fever is associated with improved breast cancer prognosis, potentially through the modulation of cytokines. However, the key cytokines and the underlying mechanisms through which fever exerts its anti-tumor effects remain unclear.

Patients And Methods: A total of 794 breast cancer patients were recruited between 2008 and 2017, with follow-up extending until October 31st, 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!