Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polarimetric imaging systems combining machine learning is emerging as a promising tool for the support of diagnosis and intervention decision-making processes in cancer detection/staging. A present study proposes a novel method based on Mueller matrix imaging combining optical parameters and machine learning models for classifying the progression of skin cancer based on the identification of three different types of mice skin tissues: healthy, papilloma, and squamous cell carcinoma. Three different machine learning algorithms (K-Nearest Neighbors, Decision Tree, and Support Vector Machine (SVM)) are used to construct a classification model using a dataset consisting of Mueller matrix images and optical properties extracted from the tissue samples. The experimental results show that the SVM model is robust to discriminate among three classes in the training stage and achieves an accuracy of 94 % on the testing dataset. Overall, it is provided that polarimetric imaging systems and machine learning algorithms can dynamically combine for the reliable diagnosis of skin cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682661 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e22081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!