A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polarimetric imaging combining optical parameters for classification of mice non-melanoma skin cancer tissue using machine learning. | LitMetric

Polarimetric imaging systems combining machine learning is emerging as a promising tool for the support of diagnosis and intervention decision-making processes in cancer detection/staging. A present study proposes a novel method based on Mueller matrix imaging combining optical parameters and machine learning models for classifying the progression of skin cancer based on the identification of three different types of mice skin tissues: healthy, papilloma, and squamous cell carcinoma. Three different machine learning algorithms (K-Nearest Neighbors, Decision Tree, and Support Vector Machine (SVM)) are used to construct a classification model using a dataset consisting of Mueller matrix images and optical properties extracted from the tissue samples. The experimental results show that the SVM model is robust to discriminate among three classes in the training stage and achieves an accuracy of 94 % on the testing dataset. Overall, it is provided that polarimetric imaging systems and machine learning algorithms can dynamically combine for the reliable diagnosis of skin cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682661PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22081DOI Listing

Publication Analysis

Top Keywords

machine learning
20
polarimetric imaging
12
skin cancer
12
imaging combining
8
combining optical
8
optical parameters
8
imaging systems
8
mueller matrix
8
learning algorithms
8
machine
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!