AI Article Synopsis

  • The study aimed to develop a machine learning model to predict the recurrence risk of hepatocellular carcinoma (HCC) in patients following hepatectomy, to aid in timely treatment decisions.
  • Researchers analyzed data from 315 HCC patients who underwent surgery, using various machine learning algorithms, with a focus on the multilayer perceptron (MLP) model, which showed the best predictive performance.
  • Key factors influencing recurrence were identified as γ-glutamyl transpeptidase (GGT), fibrinogen, neutrophil count, aspartate aminotransferase (AST), and total bilirubin (TB), and a web-based calculator was developed for personalized risk assessment.

Article Abstract

Background: Identifying patients with hepatocellular carcinoma (HCC) at high risk of recurrence after hepatectomy can help to implement timely interventional treatment. This study aimed to develop a machine learning (ML) model to predict the recurrence risk of HCC patients after hepatectomy.

Methods: We retrospectively collected 315 HCC patients who underwent radical hepatectomy at the Third Affiliated Hospital of Sun Yat-sen University from April 2013 to October 2017, and randomly divided them into the training and validation sets at a ratio of 7:3. According to the postoperative recurrence of HCC patients, the patients were divided into recurrence group and non-recurrence group, and univariate and multivariate logistic regression were performed for the two groups. We applied six machine learning algorithms to construct the prediction models and performed internal validation by 10-fold cross-validation. Shapley additive explanations (SHAP) method was applied to interpret the machine learning model. We also built a web calculator based on the best machine learning model to personalize the assessment of the recurrence risk of HCC patients after hepatectomy.

Results: A total of 13 variables were included in the machine learning models. The multilayer perceptron (MLP) machine learning model was proved to achieve optimal predictive value in test set (AUC = 0.680). The SHAP method displayed that γ-glutamyl transpeptidase (GGT), fibrinogen, neutrophil, aspartate aminotransferase (AST) and total bilirubin (TB) were the top 5 important factors for recurrence risk of HCC patients after hepatectomy. In addition, we further demonstrated the reliability of the model by analyzing two patients. Finally, we successfully constructed an online web prediction calculator based on the MLP machine learning model.

Conclusion: MLP was an optimal machine learning model for predicting the recurrence risk of HCC patients after hepatectomy. This predictive model can help identify HCC patients at high recurrence risk after hepatectomy to provide early and personalized treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687050PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22458DOI Listing

Publication Analysis

Top Keywords

machine learning
32
hcc patients
28
learning model
20
recurrence risk
20
risk hcc
16
patients
10
recurrence
9
machine
9
hepatocellular carcinoma
8
recurrence hepatectomy
8

Similar Publications

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!