The 70-kDa heat shock proteins (Hsp70s) are chaperone proteins involved in protein folding processes. Truncated Hsp70 (Hsp70T) refers to the variant lacking a conserved C-terminal motif, which is crucial for co-chaperone interactions or protein retention. Despite their significance, the characteristics of Hsp70Ts in plants remain largely unexplored. In this study, we performed a comprehensive genome-wide analysis of 192 sequenced plant and green algae genomes to investigate the distribution and features of Hsp70Ts. Our findings unveil the widespread occurrence of Hsp70Ts across all four Hsp70 forms, including cytosolic, endoplasmic reticulum, mitochondrial, and chloroplast Hsp70s, with cytosolic Hsp70T being the most prevalent and abundant subtype. Cytosolic Hsp70T is characterized by two distinct lineages, referred to as T1 and T2. Among the investigated plant and green algae species, T1 genes were identified in approximately 60% of cases, showcasing a variable gene count ranging from one to several dozens. In contrast, T2 genes were prevalent across the majority of plant genomes, usually occurring in fewer than five gene copies per species. Sequence analysis highlights that the putative T1 proteins exhibit higher similarity to full-length cytosolic Hsp70s in comparison to T2 proteins. Intriguingly, the T2 lineage demonstrates a higher level of conservation within their protein sequences, whereas the T1 lineage presents a diverse range in the C-terminal and SBDα region, leading to categorization into four distinct subtypes. Furthermore, we have observed that T1-rich species characterized by the possession of 15 or more T1 genes exhibit an expansion of T1 genes into tandem gene clusters. The T1 gene clusters identified within the Laurales order display synteny with clusters found in a species of the Chloranthales order and another species within basal angiosperms, suggesting a conserved evolutionary relationship of T1 gene clusters among these plants. Additionally, T2 genes demonstrate distinct expression patterns in seeds and under heat stress, implying their potential roles in seed development and stress response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687569PMC
http://dx.doi.org/10.3389/fpls.2023.1279540DOI Listing

Publication Analysis

Top Keywords

gene clusters
12
plant green
8
green algae
8
cytosolic hsp70t
8
cytosolic
5
species
5
genes
5
gene
5
exploration truncated
4
truncated cytosolic
4

Similar Publications

Identification of a novel butenolide signal system to regulate high production of tylosin in Streptomyces fradiae.

Appl Microbiol Biotechnol

January 2025

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl).

View Article and Find Full Text PDF

Background: Altered glucose metabolism is a critical characteristic from the beginning stage of esophageal squamous cell carcinoma (ESCC), and the phenomenon is presented as a pink-color sign under endoscopy after iodine staining. Therefore, calculating the metabolic score based on the glucose metabolic gene sets may bring some novel insights, enabling the prediction of prognosis and the identification of treatment choices for ESCC.

Methods: A total of 8, 99, and 140 individuals from The Gene Expression Omnibus database, The Cancer Genome Atlas database, and the Memorial Sloan Kettering Cancer Center, respectively, were encompassed in the investigation.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Genome mining has revealed that spp. possess numerous down-regulated or cryptic biosynthetic gene clusters (BGCs). This finding hinted that our investigation of fungal secondary metabolomes is limited.

View Article and Find Full Text PDF

Background: Emerging evidence underscores the comorbidity mechanisms among autoimmune diseases (AIDs), with innovative technologies such as single-cell RNA sequencing (scRNA-seq) significantly advancing the explorations in this field. This study aimed to investigate the shared genes among three AIDs-Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA) using bioinformatics databases, and to identify potential biomarkers for early diagnosis.

Methods: We retrieved transcriptomic data of MS, SLE, and RA patients from public databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!