AI Article Synopsis

  • The study examined the effects of γ-aminobutyric acid (GABA) at concentrations of 1 mM and 5 mM on papaya fruit stored at low temperatures (4°C) and high humidity (80%-90%) for 5 weeks.
  • GABA at 5 mM effectively reduced several negative effects such as chilling injury, internal browning, and leakage of electrolytes, while increasing the activities of important antioxidant enzymes like catalase and superoxide dismutase.
  • This treatment led to higher levels of beneficial compounds like proline and phenolic content, suggesting that GABA could enhance the chilling tolerance of papaya by reducing oxidative stress and boosting the fruit’s natural defense mechanisms.

Article Abstract

The effect of γ-aminobutyric acid (GABA) treatment at two concentrations (1 mM or 5 mM) on papaya fruit stored at 4°C and 80%-90% relative humidity for 5 weeks was investigated. The application of GABA at 5 mM apparently inhibited chilling injury, internal browning, electrolyte leakage, malondialdehyde (MDA), hydrogen peroxide (HO), polyphenol oxidase (PPO), phospholipase D (PLD), and lipoxygenase (LOX) activities of papaya fruit. Fruit treated with 5 mM GABA enhanced the activities of ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), glutamate decarboxylase (GAD), and phenylalanine ammonia-lyase (PAL). In addition, GABA treatment significantly displayed higher levels of proline, endogenous GABA accumulation, phenolic contents, and total antioxidant activity than the nontreated papaya. The results suggested that GABA treatment may be a useful approach to improving the chilling tolerance of papaya fruit by reducing oxidative stress and enhancing the defense system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687426PMC
http://dx.doi.org/10.3389/fpls.2023.1233477DOI Listing

Publication Analysis

Top Keywords

papaya fruit
16
gaba treatment
12
γ-aminobutyric acid
8
chilling injury
8
glutamate decarboxylase
8
gaba
6
papaya
5
fruit
5
acid involved
4
involved overlapping
4

Similar Publications

In Bangladesh, ensuring food safety from various hazardous contaminants, including heavy metals in different food items, has become a significant policy concern. This systematic review aimed to summarize the heavy metal contamination of locally produced fruits in Bangladesh and estimate the subsequent health risks of heavy metals upon consumption of reported fruits. A total of 1458 articles were retrieved from PubMed, Google Scholar, and manual Google searching, of which 10 were included in the current review.

View Article and Find Full Text PDF

The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.

View Article and Find Full Text PDF

First Report of Rust Caused by on L. in Korea.

Plant Dis

December 2024

National Institute of Agricultural Sciences, Crop Protection, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Korea (the Republic of), 55365;

Fig (Ficus carica L.) belonging to the Moraceae family is cultivated worldwide, with its primary production areas located in the Mediterranean region (Tous and Fergusen 1996). Yeongam-gun is a significant region for fig cultivation in Korea, accounting for 42% of the country's total fig cultivation area with approximately 1,400 fields (453ha, production yield 6000 tons).

View Article and Find Full Text PDF

The L. genus, belonging to the Moraceae family, includes around 850 species that are widely distributed in tropical and subtropical regions around the world; including the Eastern Mediterranean, Asia, Africa, Australia, and a large territory of America. Among the most important species are , , , , , Vahl, , , , and .

View Article and Find Full Text PDF

Nanocellulose is the renewable biopolymer produced in nature by different bacteria. The widespread use of nanocellulose in industrial processes increases the demand for this valuable biomaterial. To overcome the high cost of producing nanocellulose using the Hestrin-Schramm medium, alternative agricultural waste has been studied as a potential low-cost supply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!