A model for the dynamics of expanded CAG repeat alleles: and as prototypes.

Front Genet

Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Published: November 2023

Spinocerebellar ataxia types 2 (SCA2) and 3 (SCA3/MJD) are diseases due to dominant unstable expansions of CAG repeats (CAGexp). Age of onset of symptoms (AO) correlates with the CAGexp length. Repeat instability leads to increases in the expanded repeats, to important AO anticipations and to the eventual extinction of lineages. Because of that, compensatory forces are expected to act on the maintenance of expanded alleles, but they are poorly understood. we described the CAGexp dynamics, adapting a classical equation and aiming to estimate for how many generations will the descendants of a expansion last. A mathematical model was adapted to encompass anticipation, fitness, and allelic segregation; and empirical data fed the model. The arbitrated ancestral mutations included in the model had the lowest CAGexp and the highest AO described in the literature. One thousand generations were simulated until the alleles were eliminated, fixed, or 650 generations had passed. : All SCA2 lineages were eliminated in a median of 10 generations. In SCA3/MJD lineages, 593 were eliminated in a median of 29 generations. The other ones were eliminated due to anticipation after the 650th generation or remained indefinitely with CAG repeats transitioning between expanded and unexpanded ranges. : the model predicted outcomes compatible with empirical data - the very old ancestral SCA3/MJD haplotype, and the SCA2 expansions -, which previously seemed to be contradictory. This model accommodates these data into understandable dynamics and might be useful for other CAGexp disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682950PMC
http://dx.doi.org/10.3389/fgene.2023.1296614DOI Listing

Publication Analysis

Top Keywords

cag repeats
8
empirical data
8
eliminated median
8
median generations
8
model
6
cagexp
5
generations
5
model dynamics
4
expanded
4
dynamics expanded
4

Similar Publications

Background: The regulatory role of the apolipoprotein E (APOE) ε4 allele in the clinical manifestations of spinocerebellar ataxia type 3 (SCA3) remains unclear. This study aimed to evaluate the impact of the APOE ε4 allele on cognitive and motor functions in SCA3 patients.

Methods: This study included 281 unrelated SCA3 patients and 182 controls.

View Article and Find Full Text PDF

Generation of an induced pluripotent stem cell (iPSC) line (INNDSUi007-A) from a patient with Kennedy disease.

Stem Cell Res

December 2024

Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, China. Electronic address:

Abnormal trinucleotide CAG repeat expansions in exon 1 of the Androgen Receptor (AR) gene has been identified as the cause of Kennedy disease (KD). We generated and characterized a human induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMC) of a patient with genetically confirmed KD. The pluripotency of these iPSCs was verified by the expression of several pluripotency markers at both RNA and protein levels, as well as their capability to differentiate into all three germ layers.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Dentatorubral-pallidoluysian atrophy (DRPLA) is a neurodegenerative disease characterized by symptoms like ataxia, dementia, and epilepsy, caused by an expansion of CAG repeats in the ATROPHIN 1 (ATN1) gene.
  • Researchers developed Drosophila (fruit fly) models that express either normal ATN1 (Q7) or a pathogenic version with expanded repeats (Q88), revealing that the pathogenic variant significantly reduces fly motility, lifespan, and affects internal structures more severely than the normal version.
  • RNA sequencing identified pathways related to protein quality control that are altered by pathogenic ATN1, and subsequent genetic experiments highlighted the
View Article and Find Full Text PDF

Mutant huntingtin protein decreases with CAG repeat expansion: implications for therapeutics and bioassays.

Brain Commun

November 2024

Department of Neurodegenerative Disease, Huntington's Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in the huntingtin (HTT) protein. The mutant CAG repeat is unstable and expands in specific brain cells and peripheral tissues throughout life. Genes involved in the DNA mismatch repair pathways, known to act on expansion, have been identified as genetic modifiers; therefore, it is the rate of somatic CAG repeat expansion that drives the age of onset and rate of disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!