Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Decomposing a graph into groups of nodes that share similar connectivity properties is essential to understand the organization and function of complex networks. Previous works have focused on groups with specific relationships between group members, such as assortative communities or core-periphery structures, developing computational methods to find these mesoscale structures within a network. Here, we go beyond these two traditional cases and introduce a methodology that is able to identify and systematically classify all possible community types in directed multi graphs, based on the pairwise relationship between groups. We apply our approach to 53 different networks and find that assortative communities are the most common structures, but that previously unexplored types appear in almost every network. A particularly prevalent new type of relationship, which we call a structure, has information flowing from a sparsely connected group of nodes (source) to a densely connected group (basin). We look in detail at two online social networks-a new network of Twitter users and a well-studied network of political blogs-and find that source-basin structures play an important role in both of them. This confirms not only the widespread appearance of nonassortative structures but also the potential of hitherto unidentified relationships to explain the organization of complex networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681970 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgad364 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!