Objectives: Human cytomegalovirus (HCMV) reactivation is the leading viral complication after allogeneic haematopoietic stem cell transplantation (allo-HSCT). Understanding of circulating cytokine/chemokine patterns which accompany HCMV reactivation and correlate with HCMV DNAemia magnitude is limited. We aimed to characterise plasma cytokine/chemokine profiles in 36 allo-HSCT patients (21 with HCMV reactivation and 15 without HCMV reactivation) at four time-points in the first 100-day post-transplant.
Methods: The concentrations of 31 cytokines/chemokines in plasma samples were analysed using a multiplex bead-based immunoassay. Cytokine/chemokine concentrations were compared in patients with high-level HCMV DNAemia, low-level HCMV DNAemia or no HCMV reactivation, and correlated with immune cell frequencies measured using mass cytometry.
Results: Increased plasma levels of T helper 1-type cytokines/chemokines (TNF, IL-18, IP-10, MIG) were detected in patients with HCMV reactivation at the peak of HCMV DNAemia, relative to non-reactivators. Stem cell factor (SCF) levels were significantly higher before the detection of HCMV reactivation in patients who went on to develop high-level HCMV DNAemia (810-52 740 copies/mL) low-level HCMV DNAemia (< 250 copies/mL). High-level HCMV reactivators, but not low-level reactivators, developed an elevated inflammatory cytokine/chemokine profile (MIP-1α, MIP-1β, TNF, LT-α, IL-13, IL-9, SCF, HGF) at the peak of reactivation. Plasma cytokine concentrations displayed unique correlations with circulating immune cell frequencies in patients with HCMV reactivation.
Conclusion: This study identifies distinct circulating cytokine/chemokine signatures associated with the magnitude of HCMV DNAemia and the progression of HCMV reactivation after allo-HSCT, providing important insight into immune recovery patterns associated with HCMV reactivation and viral control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684332 | PMC |
http://dx.doi.org/10.1002/cti2.1473 | DOI Listing |
PLoS Pathog
December 2024
Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America.
Human cytomegalovirus (HCMV) actively manipulates cellular signaling pathways to benefit viral replication. Phosphatidyl-inositol 3-kinase (PI3K)/Akt signaling is an important negative regulator of HCMV replication, and during lytic infection the virus utilizes pUL38 to limit Akt phosphorylation and activity. During latency, PI3K/Akt signaling also limits virus replication, but how this is overcome at the time of reactivation is unknown.
View Article and Find Full Text PDFJ Virol
December 2024
Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA.
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Human cytomegalovirus (HCMV) is a betaherpesvirus capable of infecting numerous cell types and persisting throughout an infected individual's life. Disease usually occurs in individuals with compromised or underdeveloped immune systems. Several antivirals exist but have limitations relating to toxicity and resistance.
View Article and Find Full Text PDFViruses
October 2024
Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile.
Cervical cancer remains a significant global health concern, particularly in low- and middle-income countries. While persistent infection with high-risk human papillomavirus (HR-HPV) is essential for cervical cancer development, it is not sufficient on its own, suggesting the involvement of additional cofactors. The human cytomegalovirus (HCMV) is a widespread β-herpesvirus known for its ability to establish lifelong latency and reactivate under certain conditions, often contributing to chronic inflammation and immune modulation.
View Article and Find Full Text PDFUnlabelled: Human cytomegalovirus (HCMV) is a betaherpesvirus capable of infecting numerous cell types and persisting throughout an infected individual's life. Disease usually occurs in individuals with compromised or underdeveloped immune systems. Several antivirals exist but have limitations relating to toxicity and resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!