Introduction: Knee joint distraction (KJD) is a potential technique for cartilage regeneration in young patients with osteoarthritis of the knee. Static distraction has been utilised typically; however, a significant proportion of patients complain of knee stiffness post-distractor removal. The use of a hinged distractor may reduce the duration and severity of post-treatment knee stiffness by maintaining the range of motion during distraction. Furthermore, improved cartilage regeneration has been demonstrated in hinged ankle joint distraction as compared to static, and this may also be demonstrated at the knee. An evidence review was undertaken to inform further research and a potential change in practice.

Aim: A systematic review of all primary research on hinged knee joint distraction for cartilage regeneration.

Methods: An online systematic search of citation databases was conducted. Quality assessment and data extraction were undertaken by two separate researchers.

Results: The literature search returned a small number of relevant studies, of which 7 were included. Three of these were animal studies, two cadaveric and two case series. The study quality was low or very low. There was significant methodological heterogeneity with difficulties encountered in the transfer of constructs from animal and cadaveric studies to humans. Issues faced included difficulties with hinge placement and pin site pain in motion.

Conclusion: The feasibility of hinged knee joint distraction has yet to be proven. Any further research attempting to establish the benefits of hinged-over static knee distraction will have to take construct design considerations into account.

How To Cite This Article: Lineham B, van Duren B, Harwood P, . The Feasibility of Hinged Knee Arthrodiastasis for Cartilage Regeneration: A Systematic Review of the Literature. Strategies Trauma Limb Reconstr 2023;18(1):37-43.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682560PMC
http://dx.doi.org/10.5005/jp-journals-10080-1578DOI Listing

Publication Analysis

Top Keywords

hinged knee
16
cartilage regeneration
16
joint distraction
16
feasibility hinged
12
systematic review
12
knee joint
12
knee
10
knee arthrodiastasis
8
arthrodiastasis cartilage
8
regeneration systematic
8

Similar Publications

Osteotomies around the knee have a variety of indications, including pain reduction, functional improvement, knee joint stabilization, and articular cartilage preservation. Thorough preoperative planning is essential, including a determination of the precise location of any deformity (proximal tibia, distal femur, or both). High tibial osteotomies and distal femoral osteotomies can be performed in isolation, or jointly in the form of a double-level osteotomy, for correction of coronal and/or sagittal deformity of the knee.

View Article and Find Full Text PDF
Article Synopsis
  • Knee pain often involves varus deformity and unicompartmental osteoarthritis, where high tibial valgus osteotomy (HTO) has emerged as an effective treatment option to delay joint replacement.
  • A case report highlighted two patients with bilateral knee arthritis who underwent medial opening-wedge high tibial osteotomy using Dr. Saigal's plate, both achieving good range of motion and minimal complications post-surgery.
  • Comprehensive evaluations, including radiological assessments and specific surgical techniques like the Miniaci Method, were employed to ensure successful outcomes, with both patients showing significant improvement after one year.
View Article and Find Full Text PDF

Balance recovery schemes following mediolateral gyroscopic moment perturbations during walking.

PLoS One

December 2024

Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany.

Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions.

View Article and Find Full Text PDF

Nothronychus graffami was a large therizinosaur represented by a single well-preserved individual from the Turonian Tropic Shale of southern Utah. It is characterized by an enlarged abdomen, small tail, and an extensively pneumatized axial skeleton, and is frequently regarded as herbivorous. Given the overall tail reduction and the development of a wide fused synsacrum with widely spaced acetabulae, it is reconstructed with an anteriorly rotated femur and a displaced resting ground reaction force anterior to the center of mass.

View Article and Find Full Text PDF

Analysis of the distribution of mechanical load on the plate and lateral hinge of a valgus-producing open wedge high tibial osteotomy during weight-bearing by simulating consolidation. Finite element study.

Orthop Traumatol Surg Res

December 2024

Laboratoire ICube, Université de Strasbourg - CNRS, 4 rue de la Manufacture des Tabacs, 67000 Strasbourg, France; Service de Chirurgie Orthopédique et de Traumatologie, Hôpital de Hautepierre II, 1 Avenue Molière, 67098 Strasbourg Cedex, France. Electronic address:

Introduction: High tibial osteotomy (HTO) is indicated for managing isolated medial knee osteoarthritis in a young patient with a metaphyseal deformity of the proximal tibia. In a medial open-wedge HTO, maintaining the integrity of the hinge is crucial for consolidation and preservation of the correction. Based on a validated model and preliminary results, the objective of this work was to measure and monitor the distribution of mechanical load on a locking fixation plate and the lateral hinge of an HTO using a finite element (FE) model during different phases of consolidation evolution, simulating single leg weightbearing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!