Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10684755PMC
http://dx.doi.org/10.3389/fcell.2023.1286683DOI Listing

Publication Analysis

Top Keywords

tert promoter
16
promoter mutations
16
telomerase reverse
8
reverse transcriptase
8
role tert
8
mutations telomerase
8
tert gene
8
cancer cells
8
tert
7
promoter
6

Similar Publications

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Reduced lymphoid enhancer-binding factor 1 (LEF1) expression in patients with adenomyosis during the mid-secretory phase leads to impaired endometrial receptivity, affecting embryo implantation. This study investigated the molecular mechanisms underlying reduced endometrial receptivity in 25 adenomyosis patients and 25 controls. Functional experiments were conducted using human endometrial stromal cells (HESCs) and TERT-immortalized HESCs(T-HESCs), with final validation performed using a mouse model.

View Article and Find Full Text PDF

Deep penetrating nevi (DPNs) are characterized by activating mutations in the MAP kinase and Wnt/beta-catenin pathways that result in large melanocytes with increased nuclear atypia, cytoplasmic pigmentation, and often mitotic activity. Together with a lack of maturation, this constellation of findings creates challenges for pathologists to distinguish deep penetrating nevus (DPN) from DPN-like melanoma. To assess the utility of next generation sequencing (NGS) in resolving this diagnostic dilemma, we performed NGS studies on 35 lesions including 24 DPNs and 11 DPN-like melanomas to characterize the specific genomic differences between the two groups and elucidate the genetic events involved in malignant transformation of DPNs.

View Article and Find Full Text PDF

Clinicopathologic and genomic characteristics of biliary tract carcinomas with TERT promoter mutations among East Asian population.

Pathol Res Pract

December 2024

Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Center for Companion Diagnostics, Precision Medicine Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea. Electronic address:

Telomerase reverse transcriptase gene promoter (TERT) mutations are biomarkers that predict survival and responses to immune checkpoint inhibitors in various malignancies. However, their prevalence and clinicopathologic characteristics in biliary tract carcinomas are largely unknown. We performed a comprehensive genomic profiling of formalin-fixed paraffin-embedded tumor tissue from 485 carcinomas, including intrahepatic (n = 220), perihilar (n = 54), distal biliary tract (n = 110), and gallbladder (n = 101) cancers, using next-generation sequencing.

View Article and Find Full Text PDF

Microbial Astaxanthin Synthesis by through Metabolic and Fermentation Engineering.

J Agric Food Chem

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China.

Astaxanthin is a kind of carotenoid with a strong antioxidant ability, which has shown broad applications in the areas of healthcare, medicine, cosmetics, food additives, and aquaculture. With the increasing demand for natural products, the microbial production of astaxanthin has become a new hot spot. In this study, the astaxanthin synthesis pathway was first metabolically constructed in ()().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!