Multiple hydrogen-bonding motifs serve as important building blocks for molecular recognition and self-assembly. Herein, a photoswitchable quadruple hydrogen-bonding motif featuring near-complete, reversible, and thermostable conversion between DADA and AADD arrays associated with an alteration of their dimerization constants by over 3 orders of magnitude is reported. The system is based on a diarylethene featuring a ureidopyrimidin-4-ol moiety, which upon photoinduced ring closure and associated loss of aromaticity undergoes enol-keto tautomerization to a ureidopyrimidinone moiety. The latter causes a transformation of the hydrogen-bonding arrays and significantly weakens the free energy of dimerization in the case of the closed isomer. This photoswitchable quadruple hydrogen-bonding motif should allow us to spatially and temporarily direct self-assembly and supramolecular polymerization processes by light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c10401 | DOI Listing |
J Am Chem Soc
January 2024
DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany.
J Phys Chem Lett
November 2023
Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany.
Quadruple-switchable nanoscale assemblies are built by combining two types of water-soluble molecular photoswitches through dipole-dipole interaction. Uniting the wavelength-specific proton dissociation of a photoacid and ring-opening of an anionic spirooxazine results in an assembly that can be addressed by irradiation with two different wavelengths: pH and darkness.
View Article and Find Full Text PDFChem Asian J
December 2021
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, 321004, Jinhua, P. R. China.
A photo-switchable hetero-complementary quadruple H-bonding array, which consists of an azobenzene-derived ureidopyrimidinone (UPy) module (Azo-UPy) and a nonphotoactive diamidonaphthyridine (DAN) derivative (Napy-1), is constructed based on a reversible photo-locking approach. Upon UV (390 nm)/Vis (460 nm) light irradiations, photo-switchable quadruple H-bonded dimerization between Azo-UPy and Napy-1 can be achieved with exhibiting 4.8×10 -fold differences in binding strength (ON/OFF ratios).
View Article and Find Full Text PDFChem Sci
December 2020
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 China
Developing new photoswitchable noncovalent interaction motifs with controllable bonding affinity is crucial for the construction of photoresponsive supramolecular systems and materials. Here we describe a unique "photolocking" strategy for realizing photoswitchable control of quadruple hydrogen-bonding interactions on the basis of modifying the ureidopyrimidinone (UPy) module with an -ester substituted azobenzene unit as the "photo-lock". Upon light irradiation, the obtained motif is capable of unlocking/locking the partial H-bonding sites of the UPy unit, leading to photoswitching between homo- and heteroquadruple hydrogen-bonded dimers, which has been further applied for the fabrication of novel tunable hydrogen bonded supramolecular systems.
View Article and Find Full Text PDFDalton Trans
April 2021
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
Chiroptical photoswitches are of increasing interest for their potential in advanced information technologies. Herein, an achiral bis-β-diketonate ligand (o-L) with a photoresponsive diarylethene moiety as a linker was designed, which co-assembled with Eu ions and R- and S-bis(diphenylphosphoryl)-1,10-binaphthyl (R/S-BINAPO) as chiral ancillaries to form dinuclear triple-stranded helicates, [Eu(o-L)(R/S-BINAPO)]. The helicates in the enantiopure form were confirmed by H, F, P NMR and DOSY NMR analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!