Persistent cellular stress induced perpetuation and uncontrolled amplification of inflammatory response results in a shift from tissue repair toward collateral damage, significant alterations of tissue functions, and derangements of homeostasis which in turn can lead to a large number of acute and chronic pathological conditions, such as chronic heart failure, atherosclerosis, myocardial infarction, neurodegenerative diseases, diabetes, rheumatoid arthritis, and cancer. Keeping the vital role of balanced inflammation in maintaining tissue integrity in mind, the way to combating inflammatory diseases may be through identification and characterization of mediators of inflammation that can be targeted without hampering normal body function. Pirin (PIR) is a non-heme iron containing protein having two different conformations depending on the oxidation state of the iron. Through exploration of the Pirin interactome and using molecular docking approaches, we identified that the Fe2+-bound Pirin directly interacts with BCL3, NFKBIA, NFIX and SMAD9 with more resemblance to the native binding pose and higher affinity than the Fe3+-bound form. In addition, Pirin appears to have a function in the regulation of inflammation, the transition between the canonical and non-canonical NF-κB pathways, and the remodeling of the actin cytoskeleton. Moreover, Pirin signaling appears to have a critical role in tumor invasion and metastasis, as well as metabolic and neuro-pathological complications. There are regulatory variants in PIR that can influence expression of not only PIR but also other genes, including VEGFD and ACE2. Disparity exists between South Asian and European populations in the frequencies of variant alleles at some of these regulatory loci that may lead to differential occurrence of Pirin-mediated pathogenic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688961 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289158 | PLOS |
Nat Commun
December 2024
Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
bioRxiv
December 2024
Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
Pirin is a non-heme iron binding protein with a variety of proposed functions including serving as a co-activator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography (SEC) and fluorescence polarization (FP) studies did not detect an interaction.
View Article and Find Full Text PDFCancer Lett
November 2024
Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China. Electronic address:
Ionizing radiation (IR)-induced intestinal injury remains a major limiting factor in abdominal radiation therapy, and its pathogenesis remains unclear. In this study, mouse models of IR-induced intestinal injury were established, and the effect of IR on nuclear factor erythroid 2-related factor 2 (Nrf2) was determined. More severe IR-induced intestinal damage was observed in Nrf2 knockout (KO) mice than in wild-type mice.
View Article and Find Full Text PDFInsects
July 2024
The Yeast Foundation, 1015 JR Amsterdam, The Netherlands.
In this study, we conducted a comprehensive survey aimed at assessing the diversity of yeast species inhabiting the guts of various insect species collected mainly from two Bulgarian National Parks, namely, Rila, and Pirin. The insect specimens encompass a broad taxonomic spectrum, including representatives from Coleoptera, Orthoptera, Lepidoptera, Hymenoptera, Dermaptera, Isopoda, and Collembola. Yeast strains were identified with DNA barcoding using the ribosomal markers, specifically, the D1/D2 domains of the ribosomal large subunit (LSU) and the internal transcribed spacers regions ITS 1 + 2 (ITS).
View Article and Find Full Text PDFMicrobiologyopen
August 2024
Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA.
The understanding of how central metabolism and fermentation pathways regulate antimicrobial susceptibility in the anaerobic pathogen Bacteroides fragilis is still incomplete. Our study reveals that B. fragilis encodes two iron-dependent, redox-sensitive regulatory pirin protein genes, pir1 and pir2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!