Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: This study aims to develop high-performing Machine Learning and Deep Learning models in predicting hospital length of stay (LOS) while enhancing interpretability. We compare performance and interpretability of models trained only on structured tabular data with models trained only on unstructured clinical text data, and on mixed data.
Methods: The structured data was used to train fourteen classical Machine Learning models including advanced ensemble trees, neural networks and k-nearest neighbors. The unstructured data was used to fine-tune a pre-trained Bio Clinical BERT Transformer Deep Learning model. The structured and unstructured data were then merged into a tabular dataset after vectorization of the clinical text and a dimensional reduction through Latent Dirichlet Allocation. The study used the free and publicly available Medical Information Mart for Intensive Care (MIMIC) III database, on the open AutoML Library AutoGluon. Performance is evaluated with respect to two types of random classifiers, used as baselines.
Results: The best model from structured data demonstrates high performance (ROC AUC = 0.944, PRC AUC = 0.655) with limited interpretability, where the most important predictors of prolonged LOS are the level of blood urea nitrogen and of platelets. The Transformer model displays a good but lower performance (ROC AUC = 0.842, PRC AUC = 0.375) with a richer array of interpretability by providing more specific in-hospital factors including procedures, conditions, and medical history. The best model trained on mixed data satisfies both a high level of performance (ROC AUC = 0.963, PRC AUC = 0.746) and a much larger scope in interpretability including pathologies of the intestine, the colon, and the blood; infectious diseases, respiratory problems, procedures involving sedation and intubation, and vascular surgery.
Conclusions: Our results outperform most of the state-of-the-art models in LOS prediction both in terms of performance and of interpretability. Data fusion between structured and unstructured text data may significantly improve performance and interpretability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688642 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289795 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!