Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Measuring center-of-pressure (COP) trajectories in out-of-the-lab environments may provide valuable information about changes in gait and balance function related to natural disease progression or treatment in neurological disorders. Traditional equipment to acquire COP trajectories includes stationary force plates, instrumented treadmills, electronic walkways, and insoles featuring high-density force sensing arrays, all of which are expensive and not widely accessible. This study introduces novel deep recurrent neural networks that can accurately estimate dynamic COP trajectories by fusing data from affordable and heterogeneous insole-embedded sensors (namely, an eight-cell array of force sensitive resistors (FSRs) and an inertial measurement unit (IMU)). The method was validated against gold-standard equipment during out-of-the-lab ambulatory tasks that simulated real-world walking. Root-mean-square errors (RMSE) in the mediolateral (ML) and anteroposterior (AP) directions obtained from healthy individuals (ML: 0.51 cm, AP: 1.44 cm) and individuals with neuromuscular conditions (ML: 0.59 cm, AP: 1.53 cm) indicated technical validity. In individuals with neuromuscular conditions, COP-derived metrics showed significant correlations with validated clinical measures of ambulatory function and lower-extremity muscle strength, providing proof-of-concept evidence of the convergent validity of the proposed method for clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2023.3338519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!