Single-molecule nanorotors are generally constructed based on boron atoms to obtain structural fluxionality via possessing the delocalized multicenter bonds. However, the electron-deficient boron atoms are commonly exposed in these nanorotors, which leads to extremely high chemical reactivity, which blocks the synthesis in the condensed phase. In this work, we computationally designed a series of transition-metal-doped boron oxide clusters MBO (in structural configuration of [(OB)-M©BO-BO], M = Mn, Tc, Re, © means "centered" in a planar or quasi-planar hypercoordinate environment), which can be vividly named as "ballet rotors" to label their anthropomorphic dynamic rotational behaviors. The rotational fluxionality in ballet rotors originates from the completely delocalized nature of the bonding within their MB core moieties. Remarkably, compared with single-molecule nanorotors having bare boron atoms and the narrow HOMO-LUMO gaps (≤4.00 eV) as well as low vertical detachment energies (VDEs, ≤4.46 eV for anions), the ballet rotors possess significantly improved chemical stability, as evidenced sterically by the absence of exposed boron atoms and electronically by much wider HOMO-LUMO gaps (5.66-5.98 eV) as well as obviously higher VDEs between 5.36 and 5.47 eV. Specifically, the ballet rotors are mainly stabilized by the delicately placed peripheral oxygen atoms, which can compensate for all electron-deficient boron atoms via O → B π back bonds and sterically protect them. Simultaneously, they are additionally stabilized by aromatic stabilization effect from possessing the novel S + P + D triple aromaticity. We expect that the proposal of chemically stable ballet rotors in this work can arouse the rational design of nanorotors for experimental realization in the condensed phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c02623 | DOI Listing |
Inorg Chem
December 2023
Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, People's Republic of China.
Single-molecule nanorotors are generally constructed based on boron atoms to obtain structural fluxionality via possessing the delocalized multicenter bonds. However, the electron-deficient boron atoms are commonly exposed in these nanorotors, which leads to extremely high chemical reactivity, which blocks the synthesis in the condensed phase. In this work, we computationally designed a series of transition-metal-doped boron oxide clusters MBO (in structural configuration of [(OB)-M©BO-BO], M = Mn, Tc, Re, © means "centered" in a planar or quasi-planar hypercoordinate environment), which can be vividly named as "ballet rotors" to label their anthropomorphic dynamic rotational behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!