[(OB)-M©BO-BO] (M = Mn, Tc, Re): Chemically Stable and Triply Aromatic Ballet Rotors.

Inorg Chem

Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, People's Republic of China.

Published: December 2023

Single-molecule nanorotors are generally constructed based on boron atoms to obtain structural fluxionality via possessing the delocalized multicenter bonds. However, the electron-deficient boron atoms are commonly exposed in these nanorotors, which leads to extremely high chemical reactivity, which blocks the synthesis in the condensed phase. In this work, we computationally designed a series of transition-metal-doped boron oxide clusters MBO (in structural configuration of [(OB)-M©BO-BO], M = Mn, Tc, Re, © means "centered" in a planar or quasi-planar hypercoordinate environment), which can be vividly named as "ballet rotors" to label their anthropomorphic dynamic rotational behaviors. The rotational fluxionality in ballet rotors originates from the completely delocalized nature of the bonding within their MB core moieties. Remarkably, compared with single-molecule nanorotors having bare boron atoms and the narrow HOMO-LUMO gaps (≤4.00 eV) as well as low vertical detachment energies (VDEs, ≤4.46 eV for anions), the ballet rotors possess significantly improved chemical stability, as evidenced sterically by the absence of exposed boron atoms and electronically by much wider HOMO-LUMO gaps (5.66-5.98 eV) as well as obviously higher VDEs between 5.36 and 5.47 eV. Specifically, the ballet rotors are mainly stabilized by the delicately placed peripheral oxygen atoms, which can compensate for all electron-deficient boron atoms via O → B π back bonds and sterically protect them. Simultaneously, they are additionally stabilized by aromatic stabilization effect from possessing the novel S + P + D triple aromaticity. We expect that the proposal of chemically stable ballet rotors in this work can arouse the rational design of nanorotors for experimental realization in the condensed phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c02623DOI Listing

Publication Analysis

Top Keywords

ballet rotors
20
boron atoms
20
chemically stable
8
single-molecule nanorotors
8
electron-deficient boron
8
condensed phase
8
homo-lumo gaps
8
boron
6
atoms
6
ballet
5

Similar Publications

[(OB)-M©BO-BO] (M = Mn, Tc, Re): Chemically Stable and Triply Aromatic Ballet Rotors.

Inorg Chem

December 2023

Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, People's Republic of China.

Single-molecule nanorotors are generally constructed based on boron atoms to obtain structural fluxionality via possessing the delocalized multicenter bonds. However, the electron-deficient boron atoms are commonly exposed in these nanorotors, which leads to extremely high chemical reactivity, which blocks the synthesis in the condensed phase. In this work, we computationally designed a series of transition-metal-doped boron oxide clusters MBO (in structural configuration of [(OB)-M©BO-BO], M = Mn, Tc, Re, © means "centered" in a planar or quasi-planar hypercoordinate environment), which can be vividly named as "ballet rotors" to label their anthropomorphic dynamic rotational behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!